How AI Bias Shapes Everything from Hiring to Healthcare

Generative AI tools like ChatGPT, DeepSeek, Google's Gemini and Microsoft’s Copilot are transforming industries at a rapid pace. However, as these large language models become less expensive and more widely used for critical decision-making, their built-in biases can distort outcomes and erode public trust.

Naveen Kumar, an associate professor at the University of Oklahoma's Price College of Business, has co-authored a study emphasizing the urgent need to address bias by developing and deploying ethical, explainable AI. This includes methods and policies that ensure fairness and transparency and reduce stereotypes and discrimination in LLM applications.

"As international players like DeepSeek and Alibaba release platforms that are either free or much less expensive, there is going to be a global AI price race," Kumar said. "When price is the priority, will there still be a focus on ethical issues and regulations around bias? Or, since there are now international companies involved, will there be a push for more rapid regulation? We hope it’s the latter, but we will have to wait and see."

According to research cited in their study, nearly a third of those surveyed believe they have lost opportunities, such as financial or job prospects, due to biased AI algorithms. Kumar notes that AI systems have focused on removing explicit biases, but implicit biases remain. As these LLMs become smarter, detecting implicit bias will be more challenging. This is why the need for ethical policies is so important.

"As these LLMs play a bigger role in society, specifically in finance, marketing, human relations and even healthcare, they must align with human preferences. Otherwise, they could lead to biased outcomes and unfair decisions," he said. "Biased models in healthcare can lead to inequities in patient care; biased recruitment algorithms could favor one gender or race over another; or biased advertising models may perpetuate stereotypes."

While explainable AI and ethical policies are being established, Kumar and his collaborators call on scholars to develop proactive technical and organizational solutions for monitoring and mitigating LLM bias. They also suggest that a balanced approach should be used to ensure AI applications remain efficient, fair and transparent.

"This industry is moving very fast, so there is going to be a lot of tension between stakeholders with differing objectives. We must balance the concerns of each player - the developer, the business executive, the ethicist, the regulator - to appropriately address bias in these LLM models," he said. "Finding the sweet spot across different business domains and different regional regulations will be the key to success."

Xiahua Wei, Naveen Kumar, Han Zhang.
Addressing bias in generative AI: Challenges and research opportunities in information management.
Information & Management, 2025. doi: 10.1016/j.im.2025.104103

Most Popular Now

AI Catches One-Third of Interval Breast …

An AI algorithm for breast cancer screening has potential to enhance the performance of digital breast tomosynthesis (DBT), reducing interval cancers by up to one-third, according to a study published...

Great plan: Now We need to Get Real abou…

The government's big plan for the 10 Year Health Plan for the NHS laid out a big role for delivery. However, the Highland Marketing advisory board felt the missing implementation...

Researchers Create 'Virtual Scienti…

There may be a new artificial intelligence-driven tool to turbocharge scientific discovery: virtual labs. Modeled after a well-established Stanford School of Medicine research group, the virtual lab is complete with an...

From WebMD to AI Chatbots: How Innovatio…

A new research article published in the Journal of Participatory Medicine unveils how successive waves of digital technology innovation have empowered patients, fostering a more collaborative and responsive health care...

New AI Tool Accelerates mRNA-Based Treat…

A new artificial intelligence (AI) model can improve the process of drug and vaccine discovery by predicting how efficiently specific mRNA sequences will produce proteins, both generally and in various...

AI also Assesses Dutch Mammograms Better…

AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by...

RSNA AI Challenge Models can Independent…

Algorithms submitted for an AI Challenge hosted by the Radiological Society of North America (RSNA) have shown excellent performance for detecting breast cancers on mammography images, increasing screening sensitivity while...

AI could Help Emergency Rooms Predict Ad…

Artificial intelligence (AI) can help emergency department (ED) teams better anticipate which patients will need hospital admission, hours earlier than is currently possible, according to a multi-hospital study by the...

Head-to-Head Against AI, Pharmacy Studen…

Students pursuing a Doctor of Pharmacy degree routinely take - and pass - rigorous exams to prove competency in several areas. Can ChatGPT accurately answer the same questions? A new...

NHS Active 10 Walking Tracker Users are …

Users of the NHS Active 10 app, designed to encourage people to become more active, immediately increased their amount of brisk and non-brisk walking upon using the app, according to...

New AI Tool Illuminates "Dark Side…

Proteins sustain life as we know it, serving many important structural and functional roles throughout the body. But these large molecules have cast a long shadow over a smaller subclass...

Deep Learning-Based Model Enables Fast a…

Stroke is the second leading cause of death globally. Ischemic stroke, strongly linked to atherosclerotic plaques, requires accurate plaque and vessel wall segmentation and quantification for definitive diagnosis. However, conventional...