How AI Bias Shapes Everything from Hiring to Healthcare

Generative AI tools like ChatGPT, DeepSeek, Google's Gemini and Microsoft’s Copilot are transforming industries at a rapid pace. However, as these large language models become less expensive and more widely used for critical decision-making, their built-in biases can distort outcomes and erode public trust.

Naveen Kumar, an associate professor at the University of Oklahoma's Price College of Business, has co-authored a study emphasizing the urgent need to address bias by developing and deploying ethical, explainable AI. This includes methods and policies that ensure fairness and transparency and reduce stereotypes and discrimination in LLM applications.

"As international players like DeepSeek and Alibaba release platforms that are either free or much less expensive, there is going to be a global AI price race," Kumar said. "When price is the priority, will there still be a focus on ethical issues and regulations around bias? Or, since there are now international companies involved, will there be a push for more rapid regulation? We hope it’s the latter, but we will have to wait and see."

According to research cited in their study, nearly a third of those surveyed believe they have lost opportunities, such as financial or job prospects, due to biased AI algorithms. Kumar notes that AI systems have focused on removing explicit biases, but implicit biases remain. As these LLMs become smarter, detecting implicit bias will be more challenging. This is why the need for ethical policies is so important.

"As these LLMs play a bigger role in society, specifically in finance, marketing, human relations and even healthcare, they must align with human preferences. Otherwise, they could lead to biased outcomes and unfair decisions," he said. "Biased models in healthcare can lead to inequities in patient care; biased recruitment algorithms could favor one gender or race over another; or biased advertising models may perpetuate stereotypes."

While explainable AI and ethical policies are being established, Kumar and his collaborators call on scholars to develop proactive technical and organizational solutions for monitoring and mitigating LLM bias. They also suggest that a balanced approach should be used to ensure AI applications remain efficient, fair and transparent.

"This industry is moving very fast, so there is going to be a lot of tension between stakeholders with differing objectives. We must balance the concerns of each player - the developer, the business executive, the ethicist, the regulator - to appropriately address bias in these LLM models," he said. "Finding the sweet spot across different business domains and different regional regulations will be the key to success."

Xiahua Wei, Naveen Kumar, Han Zhang.
Addressing bias in generative AI: Challenges and research opportunities in information management.
Information & Management, 2025. doi: 10.1016/j.im.2025.104103

Most Popular Now

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

Are You Eligible for a Clinical Trial? C…

A new study in the academic journal Machine Learning: Health discovers that ChatGPT can accelerate patient screening for clinical trials, showing promise in reducing delays and improving trial success rates. Researchers...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...

Global Study Reveals How Patients View M…

How physicians feel about artificial intelligence (AI) in medicine has been studied many times. But what do patients think? A team led by researchers at the Technical University of Munich...