How AI Bias Shapes Everything from Hiring to Healthcare

Generative AI tools like ChatGPT, DeepSeek, Google's Gemini and Microsoft’s Copilot are transforming industries at a rapid pace. However, as these large language models become less expensive and more widely used for critical decision-making, their built-in biases can distort outcomes and erode public trust.

Naveen Kumar, an associate professor at the University of Oklahoma's Price College of Business, has co-authored a study emphasizing the urgent need to address bias by developing and deploying ethical, explainable AI. This includes methods and policies that ensure fairness and transparency and reduce stereotypes and discrimination in LLM applications.

"As international players like DeepSeek and Alibaba release platforms that are either free or much less expensive, there is going to be a global AI price race," Kumar said. "When price is the priority, will there still be a focus on ethical issues and regulations around bias? Or, since there are now international companies involved, will there be a push for more rapid regulation? We hope it’s the latter, but we will have to wait and see."

According to research cited in their study, nearly a third of those surveyed believe they have lost opportunities, such as financial or job prospects, due to biased AI algorithms. Kumar notes that AI systems have focused on removing explicit biases, but implicit biases remain. As these LLMs become smarter, detecting implicit bias will be more challenging. This is why the need for ethical policies is so important.

"As these LLMs play a bigger role in society, specifically in finance, marketing, human relations and even healthcare, they must align with human preferences. Otherwise, they could lead to biased outcomes and unfair decisions," he said. "Biased models in healthcare can lead to inequities in patient care; biased recruitment algorithms could favor one gender or race over another; or biased advertising models may perpetuate stereotypes."

While explainable AI and ethical policies are being established, Kumar and his collaborators call on scholars to develop proactive technical and organizational solutions for monitoring and mitigating LLM bias. They also suggest that a balanced approach should be used to ensure AI applications remain efficient, fair and transparent.

"This industry is moving very fast, so there is going to be a lot of tension between stakeholders with differing objectives. We must balance the concerns of each player - the developer, the business executive, the ethicist, the regulator - to appropriately address bias in these LLM models," he said. "Finding the sweet spot across different business domains and different regional regulations will be the key to success."

Xiahua Wei, Naveen Kumar, Han Zhang.
Addressing bias in generative AI: Challenges and research opportunities in information management.
Information & Management, 2025. doi: 10.1016/j.im.2025.104103

Most Popular Now

Integrating Care Records is Good. Using …

Opinion Article by Dr Paul Deffley, Chief Medical Officer, Alcidion. A single patient record already exists in the NHS. Or at least, that’s a perception shared by many. A survey of...

Should AI Chatbots Replace Your Therapis…

The new study exposes the dangerous flaws in using artificial intelligence (AI) chatbots for mental health support. For the first time, the researchers evaluated these AI systems against clinical standards...

AI could Help Pathologists Match Cancer …

A new study by researchers at the Icahn School of Medicine at Mount Sinai, Memorial Sloan Kettering Cancer Center, and collaborators, suggests that artificial intelligence (AI) could significantly improve how...

AI Detects Early Signs of Osteoporosis f…

Investigators have developed an artificial intelligence-assisted diagnostic system that can estimate bone mineral density in both the lumbar spine and the femur of the upper leg, based on X-ray images...

AI Model Converts Hospital Records into …

UCLA researchers have developed an AI system that turns fragmented electronic health records (EHR) normally in tables into readable narratives, allowing artificial intelligence to make sense of complex patient histories...

AI Sharpens Pathologists' Interpret…

Pathologists' examinations of tissue samples from skin cancer tumours improved when they were assisted by an AI tool. The assessments became more consistent and patients' prognoses were described more accurately...

AI Tool Detects Surgical Site Infections…

A team of Mayo Clinic researchers has developed an artificial intelligence (AI) system that can detect surgical site infections (SSIs) with high accuracy from patient-submitted postoperative wound photos, potentially transforming...

Forging a Novel Therapeutic Path for Pat…

Rett syndrome is a devastating rare genetic childhood disorder primarily affecting girls. Merely 1 out of 10,000 girls are born with it and much fewer boys. It is caused by...

Mayo Clinic's AI Tool Identifies 9 …

Mayo Clinic researchers have developed a new artificial intelligence (AI) tool that helps clinicians identify brain activity patterns linked to nine types of dementia, including Alzheimer's disease, using a single...

AI Detects Fatty Liver Disease with Ches…

Fatty liver disease, caused by the accumulation of fat in the liver, is estimated to affect one in four people worldwide. If left untreated, it can lead to serious complications...

AI Matches Doctors in Mapping Lung Tumor…

In radiation therapy, precision can save lives. Oncologists must carefully map the size and location of a tumor before delivering high-dose radiation to destroy cancer cells while sparing healthy tissue...

Meet Your Digital Twin

Before an important meeting or when a big decision needs to be made, we often mentally run through various scenarios before settling on the best course of action. But when...