AI-Supported Breast Cancer Screening - New Results Suggest Even Higher Accuracy

The new findings are published in The Lancet Digital Health. The initial results of the Mammography Screening with Artificial Intelligence (MASAI) study* - a randomised trial to evaluate whether AI can improve mammography screening - were published in August 2023. The study started in spring 2021, and the final report will be written next year. A second report has now been published, and Kristina Lång, who is responsible for the study, is pleased to be able to show strong figures.

"Since the first report last year, the number of cancers detected by AI-supported screening has gone from being 20 per cent more to 29 per cent more than those found by traditional screening," says Kristina Lång, researcher and associate professor of diagnostic radiology at Lund University, Sweden and consultant at the Unilabs Mammography Unit in Malmö.

Every year, around one million women are called for mammography screening in Sweden. The mammogram are reviewed by two breast radiologists - a medical skill that is currently in short supply. In the MASAI trial, AI had to identify mammograms with an increased risk of breast cancer. These cases were then reviewed by two breast radiologists. Other mammograms were only reviewed by one breast radiologist. In all these cases, the radiologist(s) was/were assisted by AI, which highlighted suspicious findings on the image.

The new research report is based on results from almost 106,000 women screened for breast cancer. Half of them were randomly assigned to undergo traditional mammography screening, while the other half received AI-supported screening. AI-supported screening was found to pick up not only more cancers overall (in 338 people compared with 262) but also 24 per cent more early-stage invasive cancers (in 270 people compared with 217).

"They also included relatively more aggressive cancers that are particularly important to detect early. At a later stage, the prognosis may have deteriorated and more intensive treatment is often required," says Kristina Lång, pointing to potential benefits in terms of reduced suffering, higher survival rates and lower economic costs if these cancers can be detected more frequently at an early stage.

Pre-cancerous lesions, known as in situ cancers, were also more likely to be detected with AI - 51 per cent more such cases were found (68 people compared with 45). A large proportion of the additional in situ cases found were of the more severe type which also benefits from early detection.

Importantly in this context, the number of false positives did not rise despite an increase in cancer detection.

"A false positive is when a woman is recalled for work up but is then found not to have cancer. This can be a stressful experience for women participating in screening. But only seven more people, corresponding to a one per cent increase, received these false alarms in the AI-supported group compared with the control group," says Kristina Lång.

As in the previous report from last year, AI-supported screening was again found to significantly reduce breast radiologists’ workload by 44 per cent.

Sweden has a generous screening programme by international standards. All women aged 40-74 years are invited for a mammogram every 1.5-2 years. However, the interval between two screening visits can be long enough for cancer to be diagnosed - even if the last screening was considered normal. These so called interval cancers is the next group of cancers that Kristina Lång and her colleagues will analyse.

"This December, the 106,000 women have been followed up for two years, allowing researchers to see how common it is to receive a breast cancer diagnosis between two screening visits. Our hope is that AI will prove helpful here too," says Kristina Lång.

Results from the MASAI trial have already contributed to the implementation of AI support in several regional screening programs in Sweden.

Hernström V, Josefsson V, Sartor H, Schmidt D, Larsson AM, Hofvind S, Andersson I, Rosso A, Hagberg O, Lång K.
Screening performance and characteristics of breast cancer detected in the Mammography Screening with Artificial Intelligence trial (MASAI): a randomised, controlled, parallel-group, non-inferiority, single-blinded, screening accuracy study.
Lancet Digit Health. 2025 Feb 3:S2589-7500(24)00267-X. doi: 10.1016/S2589-7500(24)00267-X

* The MASAI trial has been funded with support from the Swedish Cancer Society, Lund University/ALF, the Confederation of Regional Cancer Centres and MAS Cancer.

Most Popular Now

Open Medical Works with Moray's Dig…

Open Medical is working with the Digital Health & Care Innovation Centre’s Rural Centre of Excellence on a referral management plan, as part of a research and development scheme to...

Generative AI on Track to Shape the Futu…

Using advanced artificial intelligence (AI), researchers have developed a novel method to make drug development faster and more efficient. In a new paper, Xia Ning, lead author of the study and...

AI could Help Improve Early Detection of…

A new study led by investigators at the UCLA Health Jonsson Comprehensive Cancer Center suggests that artificial intelligence (AI) could help detect interval breast cancers - those that develop between...

AI-Human Task-Sharing could Cut Mammogra…

The most effective way to harness the power of artificial intelligence (AI) when screening for breast cancer may be through collaboration with human radiologists - not by wholesale replacing them...

Reorganisation, Consolidation, and Cuts:…

NHS England has been downsized and abolished. Integrated care boards have been told to change function, consolidate, and deliver savings. Trusts are planning big cuts. The Highland Marketing advisory board...

Siemens Healthineers infection Control S…

Klinikum Region Hannover (KRH) has commissioned Siemens Healthineers to install infection control system (ICS) at the Klinikum Siloah hospital. The ICS aims to effectively tackle nosocomial infections and increase patient...

AI Tool Uses Face Photos to Estimate Bio…

Eyes may be the window to the soul, but a person's biological age could be reflected in their facial characteristics. Investigators from Mass General Brigham developed a deep learning algorithm...

Philips Future Health Index 2025 Report …

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, today unveiled its 2025 Future Health Index U.S. report, "Building trust in healthcare AI," spotlighting the state of...

AI-Powered Precision: Unlocking the Futu…

A team of researchers from the Department of Diagnostic and Therapeutic Ultrasonography at the Tianjin Medical University Cancer Institute & Hospital, have published a review in Cancer Biology & Medicine...

AI Model Improves Delirium Prediction, L…

An artificial intelligence (AI) model improved outcomes in hospitalized patients by quadrupling the rate of detection and treatment of delirium. The model identifies patients at high risk for delirium and...

Building Trust in Artificial Intelligenc…

A new review, published in the peer-reviewed journal AI in Precision Oncology, explores the multifaceted reasons behind the skepticism surrounding artificial intelligence (AI) technologies in healthcare and advocates for approaches...

SALSA: A New AI Tool for the Automated a…

Investigators of the Vall d'Hebron Institute of Oncology's (VHIO) Radiomics Group, led by Raquel Perez-Lopez, have developed SALSA (System for Automatic Liver tumor Segmentation And detection), a fully automated deep...