New Biomarkers to Detect Colorectal Cancer

Machine learning and artificial intelligence (AI) techniques and analysis of large datasets have helped University of Birmingham researchers to discover proteins that have strong predictive potential for colorectal cancer.

In a paper published in Frontiers in Oncology, researchers analysed one of the largest UK Biobank dataset of protein profiles from healthy individuals and colorectal cancer patients and highlighted three proteins - TFF3, LCN2, and CEACAM5 - as important markers linked to cell adhesion and inflammation, processes closely associated with cancer development. The next steps would require further validation of these biomarkers and then they may be developed into new diagnostic tools.

Three different machine learning models and artificial intelligence (AI) are used to recognise patterns in data.

Dr Animesh Acharjee, from the Department of Cancer and Genomic Sciences & Deputy Programme Director, MSc in Health Data Science (Dubai) who led the study said:

"Colorectal cancer is a leading cause of cancer-related deaths worldwide and it is predicted to increase in incidence over coming decades. This increase highlights the need for reliable tools to diagnose and predict the disease, especially since earlier detection allows for more effective treatment.

"This study results offer valuable insight for identifying potential biomarkers in future proteomic studies and it is hoped this knowledge will eventually help improve treatments for patients with colorectal cancer.

"In our study, we used advanced machine learning and artificial intelligence (AI) models combined with protein network analysis to identify key protein biomarkers that could aid in diagnosing colorectal cancer. The biomarkers show promise but further large-scale validation study is needed to look into the relationships and mechanistic properties of these potential new biomarkers."

Colorectal cancer is the fourth most common cancer in the UK, with around 44,100 people are diagnosed each year. This type of cancer occurs when abnormal cells start to divide and grow in an uncontrolled way, affects the large bowel, which is made up of the colon and rectum.

Currently, diagnosis involves a doctor removing tissue from the bowel and sending a sample of cells to the laboratory for various tests that can identify cancer and indicate which treatments may work best. Any advances that can help pick up colorectal cancer sooner and in a way that is more straightforward for patients would be welcomed.

Radhakrishnan SK, Nath D, Russ D, Merodio LB, Lad P, Daisi FK, Acharjee A.
Machine learning-based identification of proteomic markers in colorectal cancer using UK Biobank data.
Front Oncol. 2025 Jan 7;14:1505675. doi: 10.3389/fonc.2024.1505675

Most Popular Now

Most Advanced Artificial Touch for Brain…

For the first time ever, a complex sense of touch for individuals living with spinal cord injuries is a step closer to reality. A new study published in Science, paves...

Picking the Right Doctor? AI could Help

Years ago, as she sat in waiting rooms, Maytal Saar-Tsechansky began to wonder how people chose a good doctor when they had no way of knowing a doctor's track record...

From Text to Structured Information Secu…

Artificial intelligence (AI) and above all large language models (LLMs), which also form the basis for ChatGPT, are increasingly in demand in hospitals. However, patient data must always be protected...

AI Innovation Unlocks Non-Surgical Way t…

Researchers have developed an artificial intelligence (AI) model to detect the spread of metastatic brain cancer using MRI scans, offering insights into patients’ cancer without aggressive surgery. The proof-of-concept study, co-led...

Deep Learning Model Helps Detect Lung Tu…

A new deep learning model shows promise in detecting and segmenting lung tumors, according to a study published in Radiology, a journal of the Radiological Society of North America (RSNA)...

New Study Reveals AI's Transformati…

Intensive care units (ICUs) face mounting pressure to effectively manage resources while delivering optimal patient care. Groundbreaking research published in the INFORMS journal Information Systems Research highlights how a novel...

One of the Largest Global Surveys of Soc…

As leaders gather for the World Economic Forum Annual Meeting 2025 in Davos, Leaps by Bayer, the impact investing arm of Bayer, and Boston Consulting Group (BCG) announced the launch...

New Computer Models Open Door to Far Mor…

With antibiotic resistance a growing problem, University of Virginia School of Medicine researchers have developed cutting-edge computer models that could give the disease-fighting drugs a laser-like precision to target only...

New Biomarkers to Detect Colorectal Canc…

Machine learning and artificial intelligence (AI) techniques and analysis of large datasets have helped University of Birmingham researchers to discover proteins that have strong predictive potential for colorectal cancer. In a...

Sam Neville Joins the Highland Marketing…

Leading chief nursing information officer Sam Neville is joining the Highland Marketing advisory board. Sam brings a passion for nursing and safety to the board, which debates the big issues...

AI Model Identifies Potential Risk Genes…

Researchers from the Cleveland Clinic Genome Center have successfully applied advanced artificial intelligence (AI) genetics models to Parkinson's disease. Researchers identified genetic factors in progression and FDA-approved drugs that can...

AI Tool that may Assist Underserved Hosp…

As the fields of healthcare and technology increasingly evolve and intersect, researchers are collaborating on the best ways to use emerging technologies such as artificial intelligence (AI) to care for...