New Biomarkers to Detect Colorectal Cancer

Machine learning and artificial intelligence (AI) techniques and analysis of large datasets have helped University of Birmingham researchers to discover proteins that have strong predictive potential for colorectal cancer.

In a paper published in Frontiers in Oncology, researchers analysed one of the largest UK Biobank dataset of protein profiles from healthy individuals and colorectal cancer patients and highlighted three proteins - TFF3, LCN2, and CEACAM5 - as important markers linked to cell adhesion and inflammation, processes closely associated with cancer development. The next steps would require further validation of these biomarkers and then they may be developed into new diagnostic tools.

Three different machine learning models and artificial intelligence (AI) are used to recognise patterns in data.

Dr Animesh Acharjee, from the Department of Cancer and Genomic Sciences & Deputy Programme Director, MSc in Health Data Science (Dubai) who led the study said:

"Colorectal cancer is a leading cause of cancer-related deaths worldwide and it is predicted to increase in incidence over coming decades. This increase highlights the need for reliable tools to diagnose and predict the disease, especially since earlier detection allows for more effective treatment.

"This study results offer valuable insight for identifying potential biomarkers in future proteomic studies and it is hoped this knowledge will eventually help improve treatments for patients with colorectal cancer.

"In our study, we used advanced machine learning and artificial intelligence (AI) models combined with protein network analysis to identify key protein biomarkers that could aid in diagnosing colorectal cancer. The biomarkers show promise but further large-scale validation study is needed to look into the relationships and mechanistic properties of these potential new biomarkers."

Colorectal cancer is the fourth most common cancer in the UK, with around 44,100 people are diagnosed each year. This type of cancer occurs when abnormal cells start to divide and grow in an uncontrolled way, affects the large bowel, which is made up of the colon and rectum.

Currently, diagnosis involves a doctor removing tissue from the bowel and sending a sample of cells to the laboratory for various tests that can identify cancer and indicate which treatments may work best. Any advances that can help pick up colorectal cancer sooner and in a way that is more straightforward for patients would be welcomed.

Radhakrishnan SK, Nath D, Russ D, Merodio LB, Lad P, Daisi FK, Acharjee A.
Machine learning-based identification of proteomic markers in colorectal cancer using UK Biobank data.
Front Oncol. 2025 Jan 7;14:1505675. doi: 10.3389/fonc.2024.1505675

Most Popular Now

Stepping Hill Hospital Announced as SPAR…

Stepping Hill Hospital, part of Stockport NHS Foundation Trust, has replaced its bedside units with state-of-the art devices running a full range of information, engagement, communications and productivity apps, to...

DMEA 2025: Digital Health Worldwide in B…

8 - 10 April 2025, Berlin, Germany. From the AI Act, to the potential of the European Health Data Space, to the power of patient data in Scandinavia - DMEA 2025...

Is AI in Medicine Playing Fair?

As artificial intelligence (AI) rapidly integrates into health care, a new study by researchers at the Icahn School of Medicine at Mount Sinai reveals that all generative AI models may...

Generative AI's Diagnostic Capabili…

The use of generative AI for diagnostics has attracted attention in the medical field and many research papers have been published on this topic. However, because the evaluation criteria were...

New System for the Early Detection of Au…

A team from the Human-Tech Institute-Universitat Politècnica de València has developed a new system for the early detection of Autism Spectrum Disorder (ASD) using virtual reality and artificial intelligence. The...

Diagnoses and Treatment Recommendations …

A new study led by Prof. Dan Zeltzer, a digital health expert from the Berglas School of Economics at Tel Aviv University, compared the quality of diagnostic and treatment recommendations...

AI Tool can Track Effectiveness of Multi…

A new artificial intelligence (AI) tool that can help interpret and assess how well treatments are working for patients with multiple sclerosis (MS) has been developed by UCL researchers. AI uses...

Surrey and Sussex Healthcare NHS Trust g…

Surrey and Sussex Healthcare NHS Trust has marked an important milestone in connecting busy radiologists across large parts of South East England, following the successful go live of Sectra's enterprise...

DMEA 2025 Ends with Record Attendance an…

8 - 10 April 2025, Berlin, Germany. DMEA 2025 came to a successful close with record attendance and an impressive program. 20,500 participants attended Europe's leading digital health event over the...

Dr Jason Broch Joins the Highland Market…

The Highland Marketing advisory board has welcomed a new member - Dr Jason Broch, a GP and director with a strong track record in the NHS and IT-enabled transformation. Dr Broch...

AI-Driven Smart Devices to Transform Hea…

AI-powered, internet-connected medical devices have the potential to revolutionise healthcare by enabling early disease detection, real-time patient monitoring, and personalised treatments, a new study suggests. They are already saving lives...

Multi-Resistance in Bacteria Predicted b…

An AI model trained on large amounts of genetic data can predict whether bacteria will become antibiotic-resistant. The new study shows that antibiotic resistance is more easily transmitted between genetically...