New Computer Models Open Door to Far More Targeted Antibiotics

With antibiotic resistance a growing problem, University of Virginia School of Medicine researchers have developed cutting-edge computer models that could give the disease-fighting drugs a laser-like precision to target only specific bacteria in specific parts of the body.

As it stands, antibiotics kill bacteria indiscriminately. Because the drugs are used so widely, increasing numbers of dangerous bugs are growing resistant, threatening one of modern medicine’s most important weapons against disease.

UVA's new approach, on the other hand, would dramatically limit how often bacteria are exposed to antibiotics, reducing the chance they could become resistant to antibiotics. Further, the approach would represent a significant step forward for precision medicine, allowing doctors to better tailor treatments to individual patients’ needs. Instead of taking an antibiotic that kills bacteria regardless of whether helpful or harmful, patients could be given antibiotics that target specific bacteria causing a specific problem in a specific area of the body.

"Many biomedical challenges are incredibly complex, and computer models are emerging as a powerful tool for tackling such problems," said researcher Jason Papin, PhD, of UVA's Department of Biomedical Engineering. "We're hopeful that these computer models of the molecular networks in bacteria will help us develop new strategies to treat infections."

UVA's new approach was made possible by a herculean effort by Papin, PhD student Emma Glass and their collaborators. Working with Andrew Warren, PhD, of UVA's Biocomplexity Institute, the researchers in Papin’s lab developed sophisticated computer models of every human bacterial pathogen with sufficient genetic information available.

Glass then analyzed all those models and identified shared traits among the bacteria. This analysis yielded the discovery that bacteria in certain parts of the body, such as the stomach, tended to share metabolic properties. Basically, where they live shapes how they function.

"Using our computer models we found that the bacteria living in the stomach had unique properties," Glass said. "These properties can be used to guide design of targeted antibiotics, which could hopefully one day slow the emergence of resistant infections."

The shared similarities among the microbes in different locales could be the Achilles' heel for harmful bacteria in our bodies. With further research, doctors may be able to target specific types of bacteria in specific areas, reducing the need for broad-spectrum antibiotics.

Putting their computer-modeling approach to the test, Papin and his team have already found that they could inhibit the growth of harmful stomach bugs in lab experiments. That’s a promising sign for the future potential of their computer-modeling approach.

"We still have much to do to test these ideas for other bacteria and types of infections," Papin said. "but this work shows the incredible promise of data science and computer modeling for tackling some of the most important problems in biomedical research."

Glass EM, Dillard LR, Kolling GL, Warren AS, Papin JA.
Niche-specific metabolic phenotypes can be used to identify antimicrobial targets in pathogens.
PLoS Biol. 2024 Nov 18;22(11):e3002907. doi: 10.1371/journal.pbio.3002907

Most Popular Now

Most Advanced Artificial Touch for Brain…

For the first time ever, a complex sense of touch for individuals living with spinal cord injuries is a step closer to reality. A new study published in Science, paves...

Picking the Right Doctor? AI could Help

Years ago, as she sat in waiting rooms, Maytal Saar-Tsechansky began to wonder how people chose a good doctor when they had no way of knowing a doctor's track record...

From Text to Structured Information Secu…

Artificial intelligence (AI) and above all large language models (LLMs), which also form the basis for ChatGPT, are increasingly in demand in hospitals. However, patient data must always be protected...

AI Innovation Unlocks Non-Surgical Way t…

Researchers have developed an artificial intelligence (AI) model to detect the spread of metastatic brain cancer using MRI scans, offering insights into patients’ cancer without aggressive surgery. The proof-of-concept study, co-led...

Deep Learning Model Helps Detect Lung Tu…

A new deep learning model shows promise in detecting and segmenting lung tumors, according to a study published in Radiology, a journal of the Radiological Society of North America (RSNA)...

New Study Reveals AI's Transformati…

Intensive care units (ICUs) face mounting pressure to effectively manage resources while delivering optimal patient care. Groundbreaking research published in the INFORMS journal Information Systems Research highlights how a novel...

One of the Largest Global Surveys of Soc…

As leaders gather for the World Economic Forum Annual Meeting 2025 in Davos, Leaps by Bayer, the impact investing arm of Bayer, and Boston Consulting Group (BCG) announced the launch...

New Computer Models Open Door to Far Mor…

With antibiotic resistance a growing problem, University of Virginia School of Medicine researchers have developed cutting-edge computer models that could give the disease-fighting drugs a laser-like precision to target only...

New Biomarkers to Detect Colorectal Canc…

Machine learning and artificial intelligence (AI) techniques and analysis of large datasets have helped University of Birmingham researchers to discover proteins that have strong predictive potential for colorectal cancer. In a...

Sam Neville Joins the Highland Marketing…

Leading chief nursing information officer Sam Neville is joining the Highland Marketing advisory board. Sam brings a passion for nursing and safety to the board, which debates the big issues...

AI Model Identifies Potential Risk Genes…

Researchers from the Cleveland Clinic Genome Center have successfully applied advanced artificial intelligence (AI) genetics models to Parkinson's disease. Researchers identified genetic factors in progression and FDA-approved drugs that can...

AI Tool that may Assist Underserved Hosp…

As the fields of healthcare and technology increasingly evolve and intersect, researchers are collaborating on the best ways to use emerging technologies such as artificial intelligence (AI) to care for...