From Text to Structured Information Securely with AI

Artificial intelligence (AI) and above all large language models (LLMs), which also form the basis for ChatGPT, are increasingly in demand in hospitals. However, patient data must always be protected. Researchers at the University Hospital Bonn (UKB) and the University of Bonn have now been able to show that local LLMs can help structure radiological findings in a privacy-safe manner, with all data remaining at the hospital. They compared various LLMs on public reports without data protection and on data-protected reports. Commercial models that require data transfer to external servers showed no advantage over local, data protection-compliant models. The results have now been published in the journal Radiology.

Everything has to be in its place. Not only on the operating table or in the office, but also with data. Structured reports, for example, are helpful for doctors as well as for further use in research in databases. Later, such structured data can also be used to train other AI models for image-based diagnosis. In practice, however, reports are usually written in free text form, which complicates further use. This is exactly where the application of AI, more precisely LLMs, comes in.

LLMs can be divided into two categories: The closed-weights models are the commercial, well-known AI variants that are also used in chatbots such as Chat-GPT. Open-weights models, such as Meta's Llama models, are an option that can be run on internal clinic servers and can even be trained further. When applying these models, all data remain stored locally, which makes the use of open LLMs advantageous in terms of data security. "The problem with commercial, closed models is that in order to use them, you have to transfer the data to external servers, which are often located outside the EU. This is not recommended for patient data," emphasizes Prof. Julian Luetkens, comm. Director of the Clinic for Diagnostic and Interventional Radiology at the UKB.

"But are all LLMs equally suitable for understanding and structuring the medical content of radiological reports? To find out which LLM is suitable for a clinic, we tested various open and closed models," explains Dr. Sebastian Nowak, first and corresponding author of the study and postdoc at the University of Bonn's Clinic for Diagnostic and Interventional Radiology at the UKB. "We were also interested in whether open LLMs can be developed effectively on site in the clinic with just a few already structured reports."

Therefore, the research team carried out an analysis of 17 open and four closed LLMs. All of them analyzed thousands of radiology reports in free text form. Public radiology reports in English, without data protection, were used for the analysis as well as data-protected reports from the UKB in German.

The results show that in the case of the reports without data protection, the closed models have no advantage over some of the open LLMs. When applied directly without training, larger, open LLMs were better than smaller, open LLMs. The use of already structured reports as training data for open LLMs led to an effective improvement in the quality of information processing, even with just a few manually prepared reports. The training also reduced the difference in accuracy between large and small LLMs.

"In a training session with over 3,500 structured reports, there was no longer any relevant difference between the largest open LLM and a language model that was 1,200 times smaller," says Nowak. "Overall, it can be concluded that open LLMs can keep up with closed ones and have the advantage of being able to be developed locally in a data protection-safe manner."

This discovery has the potential to unlock clinical databases for comprehensive epidemiological studies and research into diagnostic AI. "Ultimately, this will benefit the patient, all while strictly observing data protection," explains Nowak. "We want to enable other clinics to use our research directly and have therefore published the code and methods for LLM use and training under an open license.

For further information, please visit:
https://github.com/ukb-rad-cfqiai/LLM_based_report_info_extraction/

Nowak S, Wulff B, Layer YC, Theis M, Isaak A, Salam B, Block W, Kuetting D, Pieper CC, Luetkens JA, Attenberger U, Sprinkart AM.
Privacy-ensuring Open-weights Large Language Models Are Competitive with Closed-weights GPT-4o in Extracting Chest Radiography Findings from Free-Text Reports.
Radiology. 2025 Jan;314(1):e240895. doi: 10.1148/radiol.240895

Most Popular Now

Stepping Hill Hospital Announced as SPAR…

Stepping Hill Hospital, part of Stockport NHS Foundation Trust, has replaced its bedside units with state-of-the art devices running a full range of information, engagement, communications and productivity apps, to...

DMEA 2025: Digital Health Worldwide in B…

8 - 10 April 2025, Berlin, Germany. From the AI Act, to the potential of the European Health Data Space, to the power of patient data in Scandinavia - DMEA 2025...

Is AI in Medicine Playing Fair?

As artificial intelligence (AI) rapidly integrates into health care, a new study by researchers at the Icahn School of Medicine at Mount Sinai reveals that all generative AI models may...

Generative AI's Diagnostic Capabili…

The use of generative AI for diagnostics has attracted attention in the medical field and many research papers have been published on this topic. However, because the evaluation criteria were...

New System for the Early Detection of Au…

A team from the Human-Tech Institute-Universitat Politècnica de València has developed a new system for the early detection of Autism Spectrum Disorder (ASD) using virtual reality and artificial intelligence. The...

Diagnoses and Treatment Recommendations …

A new study led by Prof. Dan Zeltzer, a digital health expert from the Berglas School of Economics at Tel Aviv University, compared the quality of diagnostic and treatment recommendations...

AI Tool can Track Effectiveness of Multi…

A new artificial intelligence (AI) tool that can help interpret and assess how well treatments are working for patients with multiple sclerosis (MS) has been developed by UCL researchers. AI uses...

Surrey and Sussex Healthcare NHS Trust g…

Surrey and Sussex Healthcare NHS Trust has marked an important milestone in connecting busy radiologists across large parts of South East England, following the successful go live of Sectra's enterprise...

DMEA 2025 Ends with Record Attendance an…

8 - 10 April 2025, Berlin, Germany. DMEA 2025 came to a successful close with record attendance and an impressive program. 20,500 participants attended Europe's leading digital health event over the...

Dr Jason Broch Joins the Highland Market…

The Highland Marketing advisory board has welcomed a new member - Dr Jason Broch, a GP and director with a strong track record in the NHS and IT-enabled transformation. Dr Broch...

AI-Driven Smart Devices to Transform Hea…

AI-powered, internet-connected medical devices have the potential to revolutionise healthcare by enabling early disease detection, real-time patient monitoring, and personalised treatments, a new study suggests. They are already saving lives...

Multi-Resistance in Bacteria Predicted b…

An AI model trained on large amounts of genetic data can predict whether bacteria will become antibiotic-resistant. The new study shows that antibiotic resistance is more easily transmitted between genetically...