AI Innovation Unlocks Non-Surgical Way to Detect Brain Cancer Spread

Researchers have developed an artificial intelligence (AI) model to detect the spread of metastatic brain cancer using MRI scans, offering insights into patients’ cancer without aggressive surgery.

The proof-of-concept study, co-led by McGill University researchers Dr. Matthew Dankner and Dr. Reza Forghani, alongside an international team of clinicians and scientists, demonstrated the AI model can detect the presence of cancer cells in surrounding brain tissue with 85-per-cent accuracy.

Researchers tested the model using MRI scans from over 130 patients who had surgery to remove brain metastases at The Neuro (Montreal Neurological Institute-Hospital). They validated the AI’s accuracy by comparing its results to what doctors observed in the tumour tissue under a microscope.

Brain metastases, the most common type of brain cancer, occur when cancer cells from other parts of the body spread to the brain. These tumours can be particularly aggressive when invasive cancer cells grow into surrounding healthy brain tissue, making them harder to treat.

"Our previous research found that invasive brain metastases are linked to shorter survival and a higher risk of tumour regrowth. These findings demonstrate the enormous potential of machine learning to soon improve our understanding of cancer and its treatment," said Dankner, an Internal Medicine Resident at McGill and post-doctoral researcher at the Rosalind & Morris Goodman Cancer Institute.

The AI model detects subtle changes in the surrounding brain tissue that indicate cancer has spread, spotting patterns often too faint for traditional imaging methods that rely on human interpretation. It was developed by Forghani’s lab during his time at the Research Institute of the McGill University Health Centre and the University of Florida College of Medicine.

Earlier this year, the researchers identified drugs that could potentially treat some brain metastases. However, to determine which patients may ultimately benefit from this approach, doctors need to know whether the cancer has spread into the surrounding tissue. Surgery is the most common solution, but it isn’t always an option for patients, especially if their tumours are hard to reach or their health makes surgery too risky.

"With further development, our AI model could become a part of clinical practice, which can help us catch cancer spread within the brain earlier and more accurately," said Dr. Benjamin Rehany, a Radiology Resident at the University of Toronto and one of the primary authors of the publication.

While their work is still in the early stages, the researchers plan to expand the study with larger datasets and refine the AI model for clinical use.

The research was supported by the Canadian Cancer Society, the Canadian Institutes of Health Research, the Brain Canada Foundation, Health Canada, Fonds de recherche du Québec - Santé, and the Fondation de l’Association des radiologistes du Québec.

Najafian K, Rehany B, Nowakowski A, Ghazimoghadam S, Pierre K, Zakarian R, Al-Saadi T, Reinhold C, Babajani-Feremi A, Wong JK, Guiot MC, Lacasse MC, Lam S, Siegel PM, Petrecca K, Dankner M, Forghani R.
Machine learning prediction of brain metastasis invasion pattern on brain magnetic resonance imaging scans.
Neurooncol Adv. 2024 Nov 16;6(1):vdae200. doi: 10.1093/noajnl/vdae200

Most Popular Now

AI Distinguishes Glioblastoma from Look-…

A Harvard Medical School–led research team has developed an AI tool that can reliably tell apart two look-alike cancers found in the brain but with different origins, behaviors, and treatments. The...

AI Body Composition Measurements can Pre…

Adiposity - or the accumulation of excess fat in the body - is a known driver of cardiometabolic diseases such as heart disease, stroke, type 2 diabetes, and kidney disease...

AI can Strengthen Pandemic Preparedness

How to identify the next dangerous virus before it spreads among people is the central question in a new Comment in The Lancet Infectious Diseases. In it, researchers discuss how...

'Future-Guided' AI Improves Se…

In the world around us, many things exist in the context of time: a bird’s path through the sky is understood as different positions over a period of time, and...

New AI Tool Scans Social Media for Hidde…

A new artificial intelligence tool can scan social media data to discover adverse events associated with consumer health products, according to a study published September 30th in the open-access journal...

Yousif's Story with Sectra and The …

Embarking on healthcare technology career after leaving his home as a refugee during his teenage years, Yousif is passionate about making a difference. He reflects on an apprenticeship in which...

AI Tool Offers Deep Insight into the Imm…

Researchers explore the human immune system by looking at the active components, namely the various genes and cells involved. But there is a broad range of these, and observations necessarily...

New Antibiotic Targets IBD - and AI Pred…

Researchers at McMaster University and the Massachusetts Institute of Technology (MIT) have made two scientific breakthroughs at once: they not only discovered a brand-new antibiotic that targets inflammatory bowel diseases...

New AI Tools Help Scientists Track How D…

Artificial intelligence (AI) can solve problems at remarkable speed, but it’s the people developing the algorithms who are truly driving discovery. At The University of Texas at Arlington, data scientists...

Study Finds One-Year Change on CT Scans …

Researchers at National Jewish Health have shown that subtle increases in lung scarring, detected by an artificial intelligence-based tool on CT scans taken one year apart, are associated with disease...

Highland to Help Companies Seize 'N…

Health tech growth partner Highland has today revealed its new identity - reflecting a sharper focus as it helps health tech companies to find market opportunities, convince target audiences, and...