AI Innovation Unlocks Non-Surgical Way to Detect Brain Cancer Spread

Researchers have developed an artificial intelligence (AI) model to detect the spread of metastatic brain cancer using MRI scans, offering insights into patients’ cancer without aggressive surgery.

The proof-of-concept study, co-led by McGill University researchers Dr. Matthew Dankner and Dr. Reza Forghani, alongside an international team of clinicians and scientists, demonstrated the AI model can detect the presence of cancer cells in surrounding brain tissue with 85-per-cent accuracy.

Researchers tested the model using MRI scans from over 130 patients who had surgery to remove brain metastases at The Neuro (Montreal Neurological Institute-Hospital). They validated the AI’s accuracy by comparing its results to what doctors observed in the tumour tissue under a microscope.

Brain metastases, the most common type of brain cancer, occur when cancer cells from other parts of the body spread to the brain. These tumours can be particularly aggressive when invasive cancer cells grow into surrounding healthy brain tissue, making them harder to treat.

"Our previous research found that invasive brain metastases are linked to shorter survival and a higher risk of tumour regrowth. These findings demonstrate the enormous potential of machine learning to soon improve our understanding of cancer and its treatment," said Dankner, an Internal Medicine Resident at McGill and post-doctoral researcher at the Rosalind & Morris Goodman Cancer Institute.

The AI model detects subtle changes in the surrounding brain tissue that indicate cancer has spread, spotting patterns often too faint for traditional imaging methods that rely on human interpretation. It was developed by Forghani’s lab during his time at the Research Institute of the McGill University Health Centre and the University of Florida College of Medicine.

Earlier this year, the researchers identified drugs that could potentially treat some brain metastases. However, to determine which patients may ultimately benefit from this approach, doctors need to know whether the cancer has spread into the surrounding tissue. Surgery is the most common solution, but it isn’t always an option for patients, especially if their tumours are hard to reach or their health makes surgery too risky.

"With further development, our AI model could become a part of clinical practice, which can help us catch cancer spread within the brain earlier and more accurately," said Dr. Benjamin Rehany, a Radiology Resident at the University of Toronto and one of the primary authors of the publication.

While their work is still in the early stages, the researchers plan to expand the study with larger datasets and refine the AI model for clinical use.

The research was supported by the Canadian Cancer Society, the Canadian Institutes of Health Research, the Brain Canada Foundation, Health Canada, Fonds de recherche du Québec - Santé, and the Fondation de l’Association des radiologistes du Québec.

Najafian K, Rehany B, Nowakowski A, Ghazimoghadam S, Pierre K, Zakarian R, Al-Saadi T, Reinhold C, Babajani-Feremi A, Wong JK, Guiot MC, Lacasse MC, Lam S, Siegel PM, Petrecca K, Dankner M, Forghani R.
Machine learning prediction of brain metastasis invasion pattern on brain magnetic resonance imaging scans.
Neurooncol Adv. 2024 Nov 16;6(1):vdae200. doi: 10.1093/noajnl/vdae200

Most Popular Now

Personalized Breast Cancer Prevention No…

A new telemedicine service for personalised breast cancer prevention has launched at preventcancer.co.uk. It allows women aged 30 to 75 across the UK to understand their risk of developing breast...

New App may Help Caregivers of People Ge…

A new study by investigators from Mass General Brigham showed that a new app they created can help improve the quality of life for caregivers of patients undergoing bone marrow...

An App to Detect Heart Attacks and Strok…

A potentially lifesaving new smartphone app can help people determine if they are suffering heart attacks or strokes and should seek medical attention, a clinical study suggests. The ECHAS app (Emergency...

A Machine Learning Tool for Diagnosing, …

Scientists aiming to advance cancer diagnostics have developed a machine learning tool that is able to identify metabolism-related molecular profile differences between patients with colorectal cancer and healthy people. The analysis...

Fine-Tuned LLMs Boost Error Detection in…

A type of artificial intelligence (AI) called fine-tuned large language models (LLMs) greatly enhances error detection in radiology reports, according to a new study published in Radiology, a journal of...

Philips Foundation 2024 Annual Report: E…

Marking its tenth anniversary, Philips Foundation released its 2024 Annual Report, highlighting a year in which the Philips Foundation helped provide access to quality healthcare for 46.5 million people around...

New AI Transforms Radiology with Speed, …

A first-of-its-kind generative AI system, developed in-house at Northwestern Medicine, is revolutionizing radiology - boosting productivity, identifying life-threatening conditions in milliseconds and offering a breakthrough solution to the global radiologist...

New Research Finds Specific Learning Str…

If data used to train artificial intelligence models for medical applications, such as hospitals across the Greater Toronto Area, differs from the real-world data, it could lead to patient harm...

Patients say "Yes..ish" to the…

As artificial intelligence (AI) continues to be integrated in healthcare, a new multinational study involving Aarhus University sheds light on how dental patients really feel about its growing role in...

'AI Scientist' Suggests Combin…

An 'AI scientist', working in collaboration with human scientists, has found that combinations of cheap and safe drugs - used to treat conditions such as high cholesterol and alcohol dependence...

Scientists Argue for More FDA Oversight …

An agile, transparent, and ethics-driven oversight system is needed for the U.S. Food and Drug Administration (FDA) to balance innovation with patient safety when it comes to artificial intelligence-driven medical...

Brains vs. Bytes: Study Compares Diagnos…

A University of Maine study compared how well artificial intelligence (AI) models and human clinicians handled complex or sensitive medical cases. The study published in the Journal of Health Organization...