Picking the Right Doctor? AI could Help

Years ago, as she sat in waiting rooms, Maytal Saar-Tsechansky began to wonder how people chose a good doctor when they had no way of knowing a doctor's track record on accurate diagnoses. Talking to other patients, she found they sometimes based choices on a physician’s personality or even the quality of their office furniture.

"I realized all these signals people are using are just not the right ones," says Saar-Tsechansky, professor of information, risk, and operations management at Texas McCombs. "We were operating in complete darkness, like there’s no transparency on these things."

In new research, she uses artificial intelligence to judge the judges: to evaluate the rates at which experts make successful decisions. Her machine learning algorithm can appraise both doctors and other kinds of experts - such as engineers who diagnose mechanical problems - when their success rates are not publicly available or not scrutinized beyond small groups of peers.

Prior research has studied how accurate doctors’ diagnoses are, but not in ways that can be scaled up or monitored on an ongoing basis, Saar-Tsechansky says.

More effective methods are vital today, she adds, when medical systems are deploying AI to help with diagnoses. It will be difficult to determine whether AI is helping or hurting successful diagnoses if observers can’t tell how successful a doctor was without the AI assist.

With McCombs doctoral student Wanxue Dong and Tomer Geva of Tel Aviv University in Israel, Saar-Tsechansky created an algorithm they call MDE-HYB. It integrates two forms of information: overall data about the quality of an expert's past decisions and more detailed evaluations of specific cases.

They then compared MDE-HYB’s results with other kinds of evaluators: three alternative algorithms and 40 human reviewers. To test the flexibility of MDE-HYB’s ratings, three very different kinds of data were analyzed: sales tax audits, spam, and online movie reviews on IMDb.

In each case, evaluators judged prior decisions made by experts about the data: such as whether they accurately classified movie reviews as positive or negative. For all three sets, MDE-HYB equaled or bested all challengers.

  • Against other algorithms, its error rates were up to 95% lower.
  • Against humans, they were up to 72% lower.

The researchers also tested MDE-HYB on Saar-Tsechansky's original concern: selecting a doctor based on the doctor’s history of correct diagnoses. Compared with doctors chosen by another algorithm, MDE-HYB dropped the average misdiagnosis rate by 41%.

In real-world use, such a difference could translate to better patient outcomes and lower costs, she says.

She cautions that MDE-HYB needs more work before putting it to such practical uses. "The main purpose of this paper was to get this idea out there, to get people to think about it, and hopefully people will improve this method," she says.

But she hopes it can one day help managers and regulators monitor expert workers' accuracy and decide when to intervene, if improvement is needed. Also, it might help consumers choose service providers such as doctors.

"In every profession where people make these types of decisions, it would be valuable to assess the quality of decision-making," Saar-Tsechansky says. "I don't think that any of us should be off the hook, especially if we make consequential decisions."

Wanxue Dong, Maytal Saar-Tsechansky, Tomer Geva.
A Machine Learning Framework for Assessing Experts' Decision Quality. Management Science, 2024. doi: 10.1287/mnsc.2021.03357

Most Popular Now

Stepping Hill Hospital Announced as SPAR…

Stepping Hill Hospital, part of Stockport NHS Foundation Trust, has replaced its bedside units with state-of-the art devices running a full range of information, engagement, communications and productivity apps, to...

DMEA 2025: Digital Health Worldwide in B…

8 - 10 April 2025, Berlin, Germany. From the AI Act, to the potential of the European Health Data Space, to the power of patient data in Scandinavia - DMEA 2025...

Is AI in Medicine Playing Fair?

As artificial intelligence (AI) rapidly integrates into health care, a new study by researchers at the Icahn School of Medicine at Mount Sinai reveals that all generative AI models may...

Generative AI's Diagnostic Capabili…

The use of generative AI for diagnostics has attracted attention in the medical field and many research papers have been published on this topic. However, because the evaluation criteria were...

New System for the Early Detection of Au…

A team from the Human-Tech Institute-Universitat Politècnica de València has developed a new system for the early detection of Autism Spectrum Disorder (ASD) using virtual reality and artificial intelligence. The...

Diagnoses and Treatment Recommendations …

A new study led by Prof. Dan Zeltzer, a digital health expert from the Berglas School of Economics at Tel Aviv University, compared the quality of diagnostic and treatment recommendations...

AI Tool can Track Effectiveness of Multi…

A new artificial intelligence (AI) tool that can help interpret and assess how well treatments are working for patients with multiple sclerosis (MS) has been developed by UCL researchers. AI uses...

Surrey and Sussex Healthcare NHS Trust g…

Surrey and Sussex Healthcare NHS Trust has marked an important milestone in connecting busy radiologists across large parts of South East England, following the successful go live of Sectra's enterprise...

DMEA 2025 Ends with Record Attendance an…

8 - 10 April 2025, Berlin, Germany. DMEA 2025 came to a successful close with record attendance and an impressive program. 20,500 participants attended Europe's leading digital health event over the...

Dr Jason Broch Joins the Highland Market…

The Highland Marketing advisory board has welcomed a new member - Dr Jason Broch, a GP and director with a strong track record in the NHS and IT-enabled transformation. Dr Broch...

AI-Driven Smart Devices to Transform Hea…

AI-powered, internet-connected medical devices have the potential to revolutionise healthcare by enabling early disease detection, real-time patient monitoring, and personalised treatments, a new study suggests. They are already saving lives...

Multi-Resistance in Bacteria Predicted b…

An AI model trained on large amounts of genetic data can predict whether bacteria will become antibiotic-resistant. The new study shows that antibiotic resistance is more easily transmitted between genetically...