Using AI to Uncover Hospital Patients' Long COVID Care Needs

Across the United States, no hospital is the same. Equipment, staffing, technical capabilities, and patient populations can all differ. So, while the profiles developed for people with common conditions may seem universal, the reality is that there are nuances that require individual attention, both in the make-up of the patients being seen and the situations of the hospitals providing their care.

New research shows that artificial intelligence can potentially help improve care overall by combing through different hospitals' data to create more refined groups of patients similar to the local populations that hospitals are actually seeing. AI can help pinpoint typical care needs, such as what specific departments and care teams are required to meet patient needs. Led by researchers at the Perelman School of Medicine at the University of Pennsylvania, the project - whose findings were published in Cell Patterns - analyzed electronic health records of long-COVID patients, revealing a collection of four patient sub-populations - such as those with asthma or mental health conditions - and their specific needs.

"Existing studies pool data from multiple hospitals but fail to consider differences in patient populations, and that limits the ability to apply findings to local decision-making," said Yong Chen, PhD, a professor of Biostatistics and the senior author of the study. "Our work moves toward providing actionable insights that can be tailored to individual institutions and can further the goal of offering more adaptive, personalized care."

The study team used a machine learning artificial intelligence technique called "latent transfer learning", to examine de-identified data on long-COVID patients pulled from eight different pediatric hospitals. Through this, they were able to call out four sub-populations of patients who had pre-existing health conditions. These four included:

  • Mental health conditions, including anxiety, depression, neurodevelopmental disorders, and attention deficit hyperactivity disorder
  • Atopic/allergic chronic conditions, such as asthma or allergies
  • Non-complex chronic conditions, like vision issues or insomnia
  • Complex chronic conditions, including those with heart or neuromuscular disorders

With those sub-populations identified, the system was also able to track what care patients required across the hospital, pointing toward updated profiles that would allow hospitals to better address increases in different patient types.

"Without identifying these distinct subpopulations, clinicians and hospitals would likely provide a one-size-fits-all approach to follow-up care and treatment," said the study's lead author, Qiong Wu, PhD, a former post-doctoral researcher in Chen’s lab who now is an assistant professor of biostatistics at the University of Pittsburgh School of Public Health. "While this unified approach might work for some patients, it may be insufficient for high-risk subgroups that require more specialized care. For example, our study found that patients with complex chronic conditions experience the most significant increases in inpatient and emergency visits."

The latent transfer learning system directly pulled out the effects these populations had on hospitals, pointing to exactly where resources should be allocated.

If the machine learning system had been in place around March 2020, Wu believes that it might have provided some key insight to mitigate some of the effects of the pandemic, including focusing resources and care on the groups most likely in need.

"This would have allowed each hospital to better anticipate needs for ICU beds, ventilators, or specialized staff - helping to balance resources between COVID-19 care and other essential services," Wu said. "Furthermore, in the early stages of the pandemic, collaborative learning across hospitals would have been particularly valuable, addressing data scarcity issues while tailoring insights to each hospital’s unique needs."

Looking past crises such as the COVID-19 pandemic and its aftermath, the AI system developed by Wu, Chen, and their team could help hospitals manage much more common conditions.

"Chronic conditions like diabetes, heart disease, and asthma often exhibit significant variation across hospitals because of the differences in available resources, patient demographics, and regional health burdens," Wu said.

The researchers believe the system they developed could be implemented at many hospitals and health systems, only requiring "relatively straightforward" data-sharing infrastructure, according to Wu.Even hospitals not able to actively incorporate machine learning could benefit, through shared information.

"By utilizing the shared findings from network hospitals, it would allow them to gain valuable insights," Wu said.

Wu Q, Pajor NM, Lu Y, Wolock CJ, Tong J, Lorman V, Johnson KB, Moore JH, Forrest CB, Asch DA, Chen Y.
A latent transfer learning method for estimating hospital-specific post-acute healthcare demands following SARS-CoV-2 infection.
Patterns (N Y). 2024 Oct 24;5(11):101079. doi: 10.1016/j.patter.2024.101079

Most Popular Now

Generative AI's Diagnostic Capabili…

The use of generative AI for diagnostics has attracted attention in the medical field and many research papers have been published on this topic. However, because the evaluation criteria were...

Diagnoses and Treatment Recommendations …

A new study led by Prof. Dan Zeltzer, a digital health expert from the Berglas School of Economics at Tel Aviv University, compared the quality of diagnostic and treatment recommendations...

Surrey and Sussex Healthcare NHS Trust g…

Surrey and Sussex Healthcare NHS Trust has marked an important milestone in connecting busy radiologists across large parts of South East England, following the successful go live of Sectra's enterprise...

AI Tool Helps Predict Relapse of Pediatr…

Artificial intelligence (AI) shows tremendous promise for analyzing vast medical imaging datasets and identifying patterns that may be missed by human observers. AI-assisted interpretation of brain scans may help improve...

Detecting Lung Cancer 4 Months Earlier a…

GPs may soon be able to identify patients with an increased risk of lung cancer up to 4 months earlier than is currently the case. The GP should be able...

Infectious Disease Surveillance Platform…

The Biothreats Emergence, Analysis and Communications Network (BEACON) leverages advanced artificial intelligence (AI), large language models (LLMs) and a network of globally based experts to rapidly collect, analyze, and disseminate...

NHS, Councils, and Housing could Share N…

A new technology partnership formally announced, could help NHS, local government, and housing organisations collaborate to create an unprecedented understanding of the risks and needs of people in their care...

Children's Health Ireland to Transf…

Healthcare teams responsible for paediatric care in Ireland are to save significant time in accessing important diagnostic imaging and reports, with the help of a new agreement with medical imaging...

AI-Powered Analysis of Stent Healing

Each year, more than three million people worldwide are treated with stents to open blocked blood vessels caused by heart disease. However, monitoring the healing process after implantation remains a...

An AI Tool Grounded in Evidence-Based Me…

A powerful clinical artificial intelligence tool developed by University at Buffalo biomedical informatics researchers has demonstrated remarkable accuracy on all three parts of the United States Medical Licensing Exam (Step...

Right Patient, Right Dose, Right Time

While artificial intelligence (AI) has shown promising potential, much of its use has remained theoretical or retrospective. Turning its potential into real-world healthcare outcomes, researchers at the Yong Loo Lin...

AXREM and BHTA Name Highland as 'Fu…

Hosted by trade associations AXREM and the British Healthcare Trades Association (BHTA), 'The Future of MedTech - Innovating for Tomorrow', will allow delegates to engage with speakers from the government...