New AI Tool Uses Routine Blood Tests to Predict Immunotherapy Response for Many Cancers

Doctors around the world may soon have access to a new tool that could better predict whether individual cancer patients will benefit from immune checkpoint inhibitors - a type of immunotherapy - using only routine blood tests and clinical data.

The artificial intelligence–based model, dubbed SCORPIO, was developed by a team of researchers from Memorial Sloan Kettering Cancer Center (MSK) and the Tisch Cancer Institute at Mount Sinai.

The model is not only cheaper and more accessible, it’s significantly better at predicting outcomes than the two current biomarkers approved by the U.S. Food and Drug Administration (FDA), according to findings published January 6 in Nature Medicine.

"Immune checkpoint inhibitors are a very powerful tool against cancer, but they don’t yet work for most patients," says study co-senior author Luc Morris, MD, a surgeon and research lab director at MSK. "These drugs are expensive, and they can come with serious side effects."

So the key is patient selection - matching the drugs with patients who are most likely to benefit, Dr. Morris says.

"There are some existing tools that predict whether tumors will respond to these drugs, but they tend to rely on advanced genomic testing that is not widely available around the world," he adds. "We wanted to develop a model that can help guide treatment decisions using widely available data, such as routine blood tests."

Yoo SK, Fitzgerald CW, Cho BA, Fitzgerald BG, Han C, Koh ES, Pandey A, Sfreddo H, Crowley F, Korostin MR, Debnath N, Leyfman Y, Valero C, Lee M, Vos JL, Lee AS, Zhao K, Lam S, Olumuyide E, Kuo F, Wilson EA, Hamon P, Hennequin C, Saffern M, Vuong L, Hakimi AA, Brown B, Merad M, Gnjatic S, Bhardwaj N, Galsky MD, Schadt EE, Samstein RM, Marron TU, Gönen M, Morris LGT, Chowell D.
Prediction of checkpoint inhibitor immunotherapy efficacy for cancer using routine blood tests and clinical data.
Nat Med. 2025 Jan 6. doi: 10.1038/s41591-024-03398-5

Most Popular Now

AI Distinguishes Glioblastoma from Look-…

A Harvard Medical School–led research team has developed an AI tool that can reliably tell apart two look-alike cancers found in the brain but with different origins, behaviors, and treatments. The...

Overcoming the AI Applicability Crisis a…

Opinion Article by Harry Lykostratis, Chief Executive, Open Medical. The government’s 10 Year Health Plan makes a lot of the potential of AI-software to support clinical decision making, improve productivity, and...

Smart Device Uses AI and Bioelectronics …

As a wound heals, it goes through several stages: clotting to stop bleeding, immune system response, scabbing, and scarring. A wearable device called "a-Heal," designed by engineers at the University...

AI Body Composition Measurements can Pre…

Adiposity - or the accumulation of excess fat in the body - is a known driver of cardiometabolic diseases such as heart disease, stroke, type 2 diabetes, and kidney disease...