New Method Tracks the 'Learning Curve' of AI to Decode Complex Genomic Data

Introducing Annotatability - a powerful new framework to address a major challenge in biological research by examining how artificial neural networks learn to label genomic data. Genomic datasets often contain vast amounts of annotated samples, but many of these samples are annotated either incorrectly or ambiguously. Borrowing from recent advances in the fields of natural language processing and computer vision, the team used artificial neural networks (ANNs) in a non-conventional way: instead of merely using the ANNs to make predictions, the group inspected the difficulty with which they learned to label different biological samples. Somewhat similarly to assessing why students find some examples harder than others, the team then leveraged this unique source of information to identify mismatches in cell annotations, improve data interpretation, and uncover key cellular pathways linked to development and disease. Annotatability provides a more accurate method for analyzing genomic data on single cells, offering significant potential for advancing biological research, and in the longer term, improving disease diagnosis and treatment.

A new study led by Jonathan Karin, Reshef Mintz, Dr. Barak Raveh and Dr. Mor Nitzan from Hebrew University, published in Nature Computational Science, introduces a new framework for interpreting single-cell and spatial omics data by monitoring deep neural networks training dynamics. The research aims to address the inherent ambiguities in cell annotations and offers a novel approach for understanding complex biological data.

Single-cell and spatial omics data have transformed our ability to explore cellular diversity and cellular behaviors in health and disease. However, the interpretation of these high-dimensional datasets is challenging, primarily due to the difficulty of assigning discrete and accurate annotations, such as cell types or states, to heterogeneous cell populations. These annotations are often subjective, noisy, and incomplete, making it difficult to extract meaningful insights from the data.

The researchers developed a new framework, Annotatability, which helps identify mismatches in cell annotations and better characterizes biological data structures. By monitoring the dynamics and difficulty of training a deep neural network over annotated data, Annotatability identifies areas where cell annotations are ambiguous or erroneous. The approach also highlights intermediate cell states and the complex, continuous nature of cellular development.

As part of the study, the team introduced a signal-aware graph embedding method that enables more precise downstream analysis of biological signals. This technique captures cellular communities associated with target signals and facilitates the exploration of cellular heterogeneity, developmental pathways, and disease trajectories.

The study demonstrates the applicability of Annotatability across a range of single-cell RNA sequencing and spatial omics datasets. Notable findings include the identification of erroneous annotations, delineation of developmental and disease-related cell states, and better characterization of cellular heterogeneity. The results highlight the potential of this framework for unraveling complex cellular behaviors and advancing our understanding of both health and disease at the single-cell level.

The researchers' work presents a significant step forward in genomic data interpretation, offering a powerful tool for unraveling cellular diversity and enhancing our ability to study the dynamics of health and disease.

Karin J, Mintz R, Raveh B, Nitzan M.
Interpreting single-cell and spatial omics data using deep neural network training dynamics.
Nat Comput Sci. 2024 Dec;4(12):941-954. doi: 10.1038/s43588-024-00721-5

Most Popular Now

Philips Foundation 2024 Annual Report: E…

Marking its tenth anniversary, Philips Foundation released its 2024 Annual Report, highlighting a year in which the Philips Foundation helped provide access to quality healthcare for 46.5 million people around...

New AI Transforms Radiology with Speed, …

A first-of-its-kind generative AI system, developed in-house at Northwestern Medicine, is revolutionizing radiology - boosting productivity, identifying life-threatening conditions in milliseconds and offering a breakthrough solution to the global radiologist...

Scientists Argue for More FDA Oversight …

An agile, transparent, and ethics-driven oversight system is needed for the U.S. Food and Drug Administration (FDA) to balance innovation with patient safety when it comes to artificial intelligence-driven medical...

New Research Finds Specific Learning Str…

If data used to train artificial intelligence models for medical applications, such as hospitals across the Greater Toronto Area, differs from the real-world data, it could lead to patient harm...

Giving Doctors an AI-Powered Head Start …

Detection of melanoma and a range of other skin diseases will be faster and more accurate with a new artificial intelligence (AI) powered tool that analyses multiple imaging types simultaneously...

AI Agents for Oncology

Clinical decision-making in oncology is challenging and requires the analysis of various data types - from medical imaging and genetic information to patient records and treatment guidelines. To effectively support...

Patients say "Yes..ish" to the…

As artificial intelligence (AI) continues to be integrated in healthcare, a new multinational study involving Aarhus University sheds light on how dental patients really feel about its growing role in...

Brains vs. Bytes: Study Compares Diagnos…

A University of Maine study compared how well artificial intelligence (AI) models and human clinicians handled complex or sensitive medical cases. The study published in the Journal of Health Organization...

'AI Scientist' Suggests Combin…

An 'AI scientist', working in collaboration with human scientists, has found that combinations of cheap and safe drugs - used to treat conditions such as high cholesterol and alcohol dependence...

Start-ups in the Spotlight at MEDICA 202…

17 - 20 November 2025, Düsseldorf, Germany. MEDICA, the leading international trade fair and platform for healthcare innovations, will once again confirm its position as the world's number one hotspot for...