AI can Improve Ovarian Cancer Diagnoses

A new international study led by researchers at Karolinska Institutet in Sweden shows that AI-based models can outperform human experts at identifying ovarian cancer in ultrasound images. The study is published in Nature Medicine.

"Ovarian tumours are common and are often detected by chance," says Professor Elisabeth Epstein at the Department of Clinical Science and Education, Södersjukhuset (Stockholm South General Hospital), at Karolinska Institutet and senior consultant at the hospital’s Department of Obstetrics and Gynecology. "There is a serious shortage of ultrasound experts in many parts of the world, which has raised concerns of unnecessary interventions and delayed cancer diagnoses. We therefor wanted to find out if AI can complement human experts."

The researchers have developed and validated neural network models able to differentiate between benign and malignant ovarian lesions, having trained and tested the AI on over 17,000 ultrasound images from 3,652 patients across 20 hospitals in eight countries. They then compared the models’ diagnostic capacity with a large group of experts and less experienced ultrasound examiners.

The results showed that the AI models outperformed both expert and non-expert examiners at identifying ovarian cancer, achieving an accuracy rate of 86.3 per cent, compared to 82.6 per cent and 77.7 per cent for the expert and non-expert examiners respectively.

"This suggests that neural network models can offer valuable support in the diagnosis of ovarian cancer, especially in difficult-to-diagnose cases and in settings where there’s a shortage of ultrasound experts," says Professor Epstein.

The AI models can also reduce the need for expert referrals. In a simulated triage situation, the AI support cut the number of referrals by 63 per cent and the misdiagnosis rate by 18 per cent. This can lead to faster and more cost-effective care for patients with ovarian lesions.

Despite the promising results, the researchers stress that further studies are needed before the full potential of the neural network models and their clinical limitations are fully understood.

"With continued research and development, AI-based tools can be an integral part of tomorrow’s healthcare, relieving experts and optimising hospital resources, but we need to make sure that they can be adapted to different clinical environments and patient groups," says Filip Christiansen, doctoral student in Professor Epstein’s research group at Karolinska Institutet and joint first author with Emir Konuk at the KTH Royal Institute of Technology.

The researchers are now conducting prospective clinical studies at Södersjukhuset to evaluate the everyday clinical safety and usefulness of the AI tool. Future research will also include a randomised multicentre study to examine its effect on patient management and healthcare costs.

The study was conducted in close collaboration with researchers at the KTH Royal Institute of Technology and was financed by grants from the Swedish Research Council, the Swedish Cancer Society, the Stockholm Regional Council, the Cancer Research Funds of Radiumhemmet and the Wallenberg AI, Autonomous Systems and Software Program (WASP).

Christiansen F, Konuk E, Ganeshan AR, Welch R, Palés Huix J, Czekierdowski A, Leone FPG, Haak LA, Fruscio R, Gaurilcikas A, Franchi D, Fischerova D, Mor E, Savelli L, Pascual MÀ, Kudla MJ, Guerriero S, Buonomo F, Liuba K, Montik N, Alcázar JL, Domali E, Pangilinan NCP, Carella C, Munaretto M, Saskova P, Verri D, Visenzi C, Herman P, Smith K, Epstein E.
International multicenter validation of AI-driven ultrasound detection of ovarian cancer.
Nat Med. 2025 Jan 2. doi: 10.1038/s41591-024-03329-4

Most Popular Now

Open Medical Works with Moray's Dig…

Open Medical is working with the Digital Health & Care Innovation Centre’s Rural Centre of Excellence on a referral management plan, as part of a research and development scheme to...

Generative AI on Track to Shape the Futu…

Using advanced artificial intelligence (AI), researchers have developed a novel method to make drug development faster and more efficient. In a new paper, Xia Ning, lead author of the study and...

Reorganisation, Consolidation, and Cuts:…

NHS England has been downsized and abolished. Integrated care boards have been told to change function, consolidate, and deliver savings. Trusts are planning big cuts. The Highland Marketing advisory board...

Personalized Breast Cancer Prevention No…

A new telemedicine service for personalised breast cancer prevention has launched at preventcancer.co.uk. It allows women aged 30 to 75 across the UK to understand their risk of developing breast...

New App may Help Caregivers of People Ge…

A new study by investigators from Mass General Brigham showed that a new app they created can help improve the quality of life for caregivers of patients undergoing bone marrow...

An App to Detect Heart Attacks and Strok…

A potentially lifesaving new smartphone app can help people determine if they are suffering heart attacks or strokes and should seek medical attention, a clinical study suggests. The ECHAS app (Emergency...

A Machine Learning Tool for Diagnosing, …

Scientists aiming to advance cancer diagnostics have developed a machine learning tool that is able to identify metabolism-related molecular profile differences between patients with colorectal cancer and healthy people. The analysis...

Fine-Tuned LLMs Boost Error Detection in…

A type of artificial intelligence (AI) called fine-tuned large language models (LLMs) greatly enhances error detection in radiology reports, according to a new study published in Radiology, a journal of...

DeepSeek-R1 Offers Promising Potential t…

A joint research team from The Hong Kong University of Science and Technology and The Hong Kong University of Science and Technology (Guangzhou) has published a perspective article in MedComm...

Deep Learning can Predict Lung Cancer Ri…

A deep learning model was able to predict future lung cancer risk from a single low-dose chest CT scan, according to new research published at the ATS 2025 International Conference...