Leveraging AI to Assist Clinicians with Physical Exams

Physical examinations are important diagnostic tools that can reveal critical insights into a patient's health, but complex conditions may be overlooked if a clinician lacks specialized training in that area. While previous research has investigated using large language models (LLMs) as tools to aid in providing diagnoses, their use in physical exams remains untapped. To address this gap, researchers from Mass General Brigham prompted the LLM GPT-4 to recommend physical exam instructions based on patient symptoms. The study suggests the potential of using LLMs as aids for clinicians during physical exams. Results are published in the Journal of Medical Artificial Intelligence.

"Medical professionals early in their career may face challenges in performing the appropriate patient-tailored physical exam because of their limited experience or other context-dependent factors, such as lower resourced settings," said senior author Marc D. Succi, MD, strategic innovation leader at Mass General Brigham Innovation, associate chair of innovation and commercialization for enterprise radiology and executive director of the Medically Engineered Solutions in Healthcare (MESH) Incubator at Mass General Brigham. "LLMs have the potential to serve as a bridge and parallel support physicians and other medical professionals with physical exam techniques and enhance their diagnostic abilities at the point of care."

Succi and his colleagues prompted GPT-4 to recommend physical exam instructions based on the patient’s primary symptom, for example, a painful hip. GPT-4’s responses were then evaluated by three attending physicians on a scale of 1 to 5 points based on accuracy, comprehensiveness, readability and overall quality. They found that GPT-4 performed well at providing instructions, scoring at least 80% of the possible points. The highest score was for "Leg Pain Upon Exertion" and the lowest was for "Lower Abdominal Pain."

"GPT-4 performed well in many respects, yet its occasional vagueness or omissions in critical areas, like diagnostic specificity, remind us of the necessity of physician judgment to ensure comprehensive patient care," said lead author Arya Rao, a student researcher in the MESH Incubator attending Harvard Medical School.

Although GPT-4 provided detailed responses, the researchers found that it occasionally left out key instructions or was overly vague, indicating the need for a human evaluator. According to researchers, the LLM’s strong performance suggests its potential as a tool to help fill gaps in physicians’ knowledge and aid in diagnosing medical conditions in the future.

Rao, Arya S et al.
A Large Language Model-Guided Approach to the Focused Physical Exam.
Journal of Medical Artificial Intelligence, 2024. doi: 10.21037/jmai-24-275

Most Popular Now

Giving Doctors an AI-Powered Head Start …

Detection of melanoma and a range of other skin diseases will be faster and more accurate with a new artificial intelligence (AI) powered tool that analyses multiple imaging types simultaneously...

AI Agents for Oncology

Clinical decision-making in oncology is challenging and requires the analysis of various data types - from medical imaging and genetic information to patient records and treatment guidelines. To effectively support...

AI Medical Receptionist Modernizing Doct…

A virtual medical receptionist named "Cassie," developed through research at Texas A&M University, is transforming the way patients interact with health care providers. Cassie is a digital-human assistant created by Humanate...

Using Data and AI to Create Better Healt…

Academic medical centers could transform patient care by adopting principles from learning health systems principles, according to researchers from Weill Cornell Medicine and the University of California, San Diego. In...

AI Tool Set to Transform Characterisatio…

A multinational team of researchers, co-led by the Garvan Institute of Medical Research, has developed and tested a new AI tool to better characterise the diversity of individual cells within...

AI Detects Hidden Heart Disease Using Ex…

Mass General Brigham researchers have developed a new AI tool in collaboration with the United States Department of Veterans Affairs (VA) to probe through previously collected CT scans and identify...

Human-AI Collectives Make the Most Accur…

Diagnostic errors are among the most serious problems in everyday medical practice. AI systems - especially large language models (LLMs) like ChatGPT-4, Gemini, or Claude 3 - offer new ways...

Northern Ireland Completes Nationwide Ro…

Go-lives at Western and Southern health and social care trusts mean every pathology service is using the same laboratory information management system; improving efficiency and quality. An ambitious technology project to...

Highland Marketing Announced as Official…

Highland Marketing has been named, for the second year running, the official communications partner for HETT Show 2025, the UK's leading digital health conference and exhibition. Taking place 7-8 October...

MHP-Net: A Revolutionary AI Model for Ac…

Liver cancer is the sixth most common cancer globally and a leading cause of cancer-related deaths. Accurate segmentation of liver tumors is a crucial step for the management of the...

Groundbreaking TACIT Algorithm Offers Ne…

Researchers at VCU Massey Comprehensive Cancer Center have developed a novel algorithm that could provide a revolutionary tool for determining the best options for patients - both in the treatment...

The Many Ways that AI Enters Rheumatolog…

High-resolution computed tomography (HRCT) is the standard to diagnose and assess progression in interstitial lung disease (ILD), a key feature in systemic sclerosis (SSc). But AI-assisted interpretation has the potential...