Leveraging AI to Assist Clinicians with Physical Exams

Physical examinations are important diagnostic tools that can reveal critical insights into a patient's health, but complex conditions may be overlooked if a clinician lacks specialized training in that area. While previous research has investigated using large language models (LLMs) as tools to aid in providing diagnoses, their use in physical exams remains untapped. To address this gap, researchers from Mass General Brigham prompted the LLM GPT-4 to recommend physical exam instructions based on patient symptoms. The study suggests the potential of using LLMs as aids for clinicians during physical exams. Results are published in the Journal of Medical Artificial Intelligence.

"Medical professionals early in their career may face challenges in performing the appropriate patient-tailored physical exam because of their limited experience or other context-dependent factors, such as lower resourced settings," said senior author Marc D. Succi, MD, strategic innovation leader at Mass General Brigham Innovation, associate chair of innovation and commercialization for enterprise radiology and executive director of the Medically Engineered Solutions in Healthcare (MESH) Incubator at Mass General Brigham. "LLMs have the potential to serve as a bridge and parallel support physicians and other medical professionals with physical exam techniques and enhance their diagnostic abilities at the point of care."

Succi and his colleagues prompted GPT-4 to recommend physical exam instructions based on the patient’s primary symptom, for example, a painful hip. GPT-4’s responses were then evaluated by three attending physicians on a scale of 1 to 5 points based on accuracy, comprehensiveness, readability and overall quality. They found that GPT-4 performed well at providing instructions, scoring at least 80% of the possible points. The highest score was for "Leg Pain Upon Exertion" and the lowest was for "Lower Abdominal Pain."

"GPT-4 performed well in many respects, yet its occasional vagueness or omissions in critical areas, like diagnostic specificity, remind us of the necessity of physician judgment to ensure comprehensive patient care," said lead author Arya Rao, a student researcher in the MESH Incubator attending Harvard Medical School.

Although GPT-4 provided detailed responses, the researchers found that it occasionally left out key instructions or was overly vague, indicating the need for a human evaluator. According to researchers, the LLM’s strong performance suggests its potential as a tool to help fill gaps in physicians’ knowledge and aid in diagnosing medical conditions in the future.

Rao, Arya S et al.
A Large Language Model-Guided Approach to the Focused Physical Exam.
Journal of Medical Artificial Intelligence, 2024. doi: 10.21037/jmai-24-275

Most Popular Now

Philips Foundation 2024 Annual Report: E…

Marking its tenth anniversary, Philips Foundation released its 2024 Annual Report, highlighting a year in which the Philips Foundation helped provide access to quality healthcare for 46.5 million people around...

New AI Transforms Radiology with Speed, …

A first-of-its-kind generative AI system, developed in-house at Northwestern Medicine, is revolutionizing radiology - boosting productivity, identifying life-threatening conditions in milliseconds and offering a breakthrough solution to the global radiologist...

Scientists Argue for More FDA Oversight …

An agile, transparent, and ethics-driven oversight system is needed for the U.S. Food and Drug Administration (FDA) to balance innovation with patient safety when it comes to artificial intelligence-driven medical...

New Research Finds Specific Learning Str…

If data used to train artificial intelligence models for medical applications, such as hospitals across the Greater Toronto Area, differs from the real-world data, it could lead to patient harm...

Giving Doctors an AI-Powered Head Start …

Detection of melanoma and a range of other skin diseases will be faster and more accurate with a new artificial intelligence (AI) powered tool that analyses multiple imaging types simultaneously...

AI Agents for Oncology

Clinical decision-making in oncology is challenging and requires the analysis of various data types - from medical imaging and genetic information to patient records and treatment guidelines. To effectively support...

Patients say "Yes..ish" to the…

As artificial intelligence (AI) continues to be integrated in healthcare, a new multinational study involving Aarhus University sheds light on how dental patients really feel about its growing role in...

Brains vs. Bytes: Study Compares Diagnos…

A University of Maine study compared how well artificial intelligence (AI) models and human clinicians handled complex or sensitive medical cases. The study published in the Journal of Health Organization...

'AI Scientist' Suggests Combin…

An 'AI scientist', working in collaboration with human scientists, has found that combinations of cheap and safe drugs - used to treat conditions such as high cholesterol and alcohol dependence...

Start-ups in the Spotlight at MEDICA 202…

17 - 20 November 2025, Düsseldorf, Germany. MEDICA, the leading international trade fair and platform for healthcare innovations, will once again confirm its position as the world's number one hotspot for...