Emotional Cognition Analysis Enables Near-Perfect Parkinson's Detection

A joint research team from the University of Canberra and Kuwait College of Science and Technology has achieved groundbreaking detection of Parkinson's disease with near-perfect accuracy, simply by analyzing brain responses to emotional situations like watching video clips or images. The findings offer an objective way to diagnose the debilitating movement disorder, instead of relying on clinical expertise and patient self-assessments, potentially enhancing treatment options and overall well-being for those affected by Parkinson's disease. The study was published Oct. 17 in Intelligent Computing, a Science Partner Journal.

Their emotional brain analysis focuses on the difference in implicit emotional reactions between Parkinson's patients, who are generally believed to suffer from impairments in recognizing emotions, and healthy individuals. The team demonstrated they can identify patients and healthy individuals with an F1 score of 0.97 or higher, based solely on brain scan readings of emotional responses. This diagnostic performance edges very close to 100% accuracy from brainwave data alone. The F1 score is a metric that combines precision and recall, where 1 is the best possible value.

The results show that Parkinson's patients displayed specific emotional perception patterns, comprehending emotional arousal better than emotional valence, which means they are more attuned to the intensity of emotions rather than the pleasantness or unpleasantness of those emotions. The patients were also found to struggle most with recognizing fear, disgust and surprise, or to confuse emotions of opposite valences, such as mistaking sadness for happiness.

The researchers recorded electroencephalography - or EEG - data, measuring electrical brain activity in 20 Parkinson's patients and 20 healthy controls. Participants watched video clips and images designed to trigger emotional responses. After the recording of EEG data, multiple EEG descriptors were processed to extract key features and these were transformed into visual representations, which were then analyzed using machine learning frameworks such as convolutional neural networks, for automatic detection of distinct patterns in how the patients processed emotions compared to the healthy group. This processing enabled the highly accurate differentiation between patients and healthy controls.

Key EEG descriptors used include spectral power vectors and common spatial patterns. Spectral power vectors capture the power distribution across various frequency bands, which are known to correlate with emotional states. Common spatial patterns enhance interclass discriminability by maximizing variance for one class while minimizing it for another, allowing for better classification of EEG signals.

As the researchers continue refining EEG-based techniques, emotional brain monitoring has the potential to become a widespread clinical tool for Parkinson's diagnosis. The study demonstrates the promise of combining neurotechnology, AI and affective computing to provide objective neurological health assessments.

Ravikiran Parameshwara, Soujanya Narayana, Murugappan Murugappan, Ibrahim Radwan, Roland Goecke, Ramanathan Subramanian.
Exploring Electroencephalography-Based Affective Analysis and Detection of Parkinson's Disease.
Intell Comput. 2024;3:0084. doi: 10.34133/icomputing.0084

Most Popular Now

Using Data and AI to Create Better Healt…

Academic medical centers could transform patient care by adopting principles from learning health systems principles, according to researchers from Weill Cornell Medicine and the University of California, San Diego. In...

AI Medical Receptionist Modernizing Doct…

A virtual medical receptionist named "Cassie," developed through research at Texas A&M University, is transforming the way patients interact with health care providers. Cassie is a digital-human assistant created by Humanate...

Northern Ireland Completes Nationwide Ro…

Go-lives at Western and Southern health and social care trusts mean every pathology service is using the same laboratory information management system; improving efficiency and quality. An ambitious technology project to...

AI Tool Set to Transform Characterisatio…

A multinational team of researchers, co-led by the Garvan Institute of Medical Research, has developed and tested a new AI tool to better characterise the diversity of individual cells within...

AI Detects Hidden Heart Disease Using Ex…

Mass General Brigham researchers have developed a new AI tool in collaboration with the United States Department of Veterans Affairs (VA) to probe through previously collected CT scans and identify...

Human-AI Collectives Make the Most Accur…

Diagnostic errors are among the most serious problems in everyday medical practice. AI systems - especially large language models (LLMs) like ChatGPT-4, Gemini, or Claude 3 - offer new ways...

MHP-Net: A Revolutionary AI Model for Ac…

Liver cancer is the sixth most common cancer globally and a leading cause of cancer-related deaths. Accurate segmentation of liver tumors is a crucial step for the management of the...

Highland Marketing Announced as Official…

Highland Marketing has been named, for the second year running, the official communications partner for HETT Show 2025, the UK's leading digital health conference and exhibition. Taking place 7-8 October...

Groundbreaking TACIT Algorithm Offers Ne…

Researchers at VCU Massey Comprehensive Cancer Center have developed a novel algorithm that could provide a revolutionary tool for determining the best options for patients - both in the treatment...