Deep Learning Model Accurately Diagnoses COPD

Using just one inhalation lung CT scan, a deep learning model can accurately diagnose and stage chronic obstructive pulmonary disease (COPD), according to a study published today in Radiology: Cardiothoracic Imaging, a journal of the Radiological Society of North America (RSNA).

COPD is a group of progressive lung diseases that impair a person's ability to breathe. Symptoms typically involve shortness of breath and fatigue. There currently is no cure for COPD, and it is the third leading cause of death worldwide, according to the World Health Organization.

A spirometry test, also known as a pulmonary function test, is traditionally used to diagnose COPD. It measures lung function through the quantity of air that can be inhaled and exhaled as well as the speed of exhalation.

CT images of the lungs can aid in COPD diagnosis. The procedure typically requires two image acquisitions, one at full inhalation, called inspiratory, and one at normal exhalation, called expiratory.

"Although studies have recently shown that lung structure, quantitatively measured using lung CT, can supplement COPD severity staging, diagnosis and prognosis, many of these studies require the acquisition of two CT images," said study author Kyle A. Hasenstab, Ph.D., assistant professor of Statistics and Data Science at San Diego State University, California. "However, this type of protocol is not clinically standard across institutions."

Some hospitals are unable to implement expiratory CT protocols due to the added training requirements.

"Implementation of expiratory CT protocols may not be feasible at many institutions due to the need for technologist training to acquire the images and radiologist training to interpret the images," Dr. Hasenstab said.

Additionally, some elderly patients with impaired lung function struggle with holding their breath, as is required during exhalation image acquisition. This may impact the quality of CT images and the accuracy of diagnosis.

Dr. Hasenstab and colleagues hypothesized that a single inhalation CT acquisition combined with a convolutional neural network (CNN), and clinical data would be sufficient for COPD diagnosis and staging. A CNN is a type of artificial neural network that uses deep learning to analyze and classify images.

In this retrospective study, the inhalation and exhalation lung CT images and spirometry data were acquired from 8,893 patients from November 2007 to April 2011. The average age of the patients included in the study was 59 years and all had a history of smoking.

The CNN was trained to predict spirometry measurements using clinical data and either a single-phase or multi-phase lung CT.

The spirometry predictions were then used to predict the Global Initiative for Obstruct Lung Disease (GOLD) stage. The GOLD system classifies the severity of a patient’s COPD into one of four stages, with one classified as mild COPD and four classified as very severe COPD.

The results of the study showed that a CNN model developed using only a single respiratory phase CT image accurately diagnosed COPD and was also accurate within one GOLD stage.

The model performed similarly to COPD diagnoses that used combined inhalation and exhalation CT measurements.

"Although many imaging protocols for COPD diagnosis and staging require two CT acquisitions, our study shows that COPD diagnosis and staging is feasible with a single CT acquisition and relevant clinical data," Dr. Hasenstab said.

When clinical data was added, the CNN model’s predictions were even more accurate.

CNN models that used only inhalation or exhalation data respectively performed the same. This suggests that certain markers used for COPD diagnosis may overlap across images.

"Reduction to a single inspiratory CT acquisition can increase accessibility to this diagnostic approach while reducing patient cost, discomfort and exposure to ionizing radiation," Dr. Hasenstab said.

Lee AN, Hsiao A, Hasenstab KA.
Evaluating the Cumulative Benefit of Inspiratory CT, Expiratory CT, and Clinical Data for COPD Diagnosis and Staging through Deep Learning.
Radiol Cardiothorac Imaging. 2024 Dec;6(6):e240005. doi: 10.1148/ryct.240005

Most Popular Now

AI Tool Offers Deep Insight into the Imm…

Researchers explore the human immune system by looking at the active components, namely the various genes and cells involved. But there is a broad range of these, and observations necessarily...

Do Fitness Apps do More Harm than Good?

A study published in the British Journal of Health Psychology reveals the negative behavioral and psychological consequences of commercial fitness apps reported by users on social media. These impacts may...

AI Tool Beats Humans at Detecting Parasi…

Scientists at ARUP Laboratories have developed an artificial intelligence (AI) tool that detects intestinal parasites in stool samples more quickly and accurately than traditional methods, potentially transforming how labs diagnose...

Making Cancer Vaccines More Personal

In a new study, University of Arizona researchers created a model for cutaneous squamous cell carcinoma, a type of skin cancer, and identified two mutated tumor proteins, or neoantigens, that...

AI, Health, and Health Care Today and To…

Artificial intelligence (AI) carries promise and uncertainty for clinicians, patients, and health systems. This JAMA Summit Report presents expert perspectives on the opportunities, risks, and challenges of AI in health...

AI can Better Predict Future Risk for He…

A landmark study led by University' experts has shown that artificial intelligence can better predict how doctors should treat patients following a heart attack. The study, conducted by an international...

AI System Finds Crucial Clues for Diagno…

Doctors often must make critical decisions in minutes, relying on incomplete information. While electronic health records contain vast amounts of patient data, much of it remains difficult to interpret quickly...

A New AI Model Improves the Prediction o…

Breast cancer is the most commonly diagnosed form of cancer in the world among women, with more than 2.3 million cases a year, and continues to be one of the...

Improved Cough-Detection Tech can Help w…

Researchers have improved the ability of wearable health devices to accurately detect when a patient is coughing, making it easier to monitor chronic health conditions and predict health risks such...

Multimodal AI Poised to Revolutionize Ca…

Although artificial intelligence (AI) has already shown promise in cardiovascular medicine, most existing tools analyze only one type of data - such as electrocardiograms or cardiac images - limiting their...

New AI Tool Makes Medical Imaging Proces…

When doctors analyze a medical scan of an organ or area in the body, each part of the image has to be assigned an anatomical label. If the brain is...