Deep Learning Model Accurately Diagnoses COPD

Using just one inhalation lung CT scan, a deep learning model can accurately diagnose and stage chronic obstructive pulmonary disease (COPD), according to a study published today in Radiology: Cardiothoracic Imaging, a journal of the Radiological Society of North America (RSNA).

COPD is a group of progressive lung diseases that impair a person's ability to breathe. Symptoms typically involve shortness of breath and fatigue. There currently is no cure for COPD, and it is the third leading cause of death worldwide, according to the World Health Organization.

A spirometry test, also known as a pulmonary function test, is traditionally used to diagnose COPD. It measures lung function through the quantity of air that can be inhaled and exhaled as well as the speed of exhalation.

CT images of the lungs can aid in COPD diagnosis. The procedure typically requires two image acquisitions, one at full inhalation, called inspiratory, and one at normal exhalation, called expiratory.

"Although studies have recently shown that lung structure, quantitatively measured using lung CT, can supplement COPD severity staging, diagnosis and prognosis, many of these studies require the acquisition of two CT images," said study author Kyle A. Hasenstab, Ph.D., assistant professor of Statistics and Data Science at San Diego State University, California. "However, this type of protocol is not clinically standard across institutions."

Some hospitals are unable to implement expiratory CT protocols due to the added training requirements.

"Implementation of expiratory CT protocols may not be feasible at many institutions due to the need for technologist training to acquire the images and radiologist training to interpret the images," Dr. Hasenstab said.

Additionally, some elderly patients with impaired lung function struggle with holding their breath, as is required during exhalation image acquisition. This may impact the quality of CT images and the accuracy of diagnosis.

Dr. Hasenstab and colleagues hypothesized that a single inhalation CT acquisition combined with a convolutional neural network (CNN), and clinical data would be sufficient for COPD diagnosis and staging. A CNN is a type of artificial neural network that uses deep learning to analyze and classify images.

In this retrospective study, the inhalation and exhalation lung CT images and spirometry data were acquired from 8,893 patients from November 2007 to April 2011. The average age of the patients included in the study was 59 years and all had a history of smoking.

The CNN was trained to predict spirometry measurements using clinical data and either a single-phase or multi-phase lung CT.

The spirometry predictions were then used to predict the Global Initiative for Obstruct Lung Disease (GOLD) stage. The GOLD system classifies the severity of a patient’s COPD into one of four stages, with one classified as mild COPD and four classified as very severe COPD.

The results of the study showed that a CNN model developed using only a single respiratory phase CT image accurately diagnosed COPD and was also accurate within one GOLD stage.

The model performed similarly to COPD diagnoses that used combined inhalation and exhalation CT measurements.

"Although many imaging protocols for COPD diagnosis and staging require two CT acquisitions, our study shows that COPD diagnosis and staging is feasible with a single CT acquisition and relevant clinical data," Dr. Hasenstab said.

When clinical data was added, the CNN model’s predictions were even more accurate.

CNN models that used only inhalation or exhalation data respectively performed the same. This suggests that certain markers used for COPD diagnosis may overlap across images.

"Reduction to a single inspiratory CT acquisition can increase accessibility to this diagnostic approach while reducing patient cost, discomfort and exposure to ionizing radiation," Dr. Hasenstab said.

Lee AN, Hsiao A, Hasenstab KA.
Evaluating the Cumulative Benefit of Inspiratory CT, Expiratory CT, and Clinical Data for COPD Diagnosis and Staging through Deep Learning.
Radiol Cardiothorac Imaging. 2024 Dec;6(6):e240005. doi: 10.1148/ryct.240005

Most Popular Now

Stepping Hill Hospital Announced as SPAR…

Stepping Hill Hospital, part of Stockport NHS Foundation Trust, has replaced its bedside units with state-of-the art devices running a full range of information, engagement, communications and productivity apps, to...

DMEA 2025: Digital Health Worldwide in B…

8 - 10 April 2025, Berlin, Germany. From the AI Act, to the potential of the European Health Data Space, to the power of patient data in Scandinavia - DMEA 2025...

Is AI in Medicine Playing Fair?

As artificial intelligence (AI) rapidly integrates into health care, a new study by researchers at the Icahn School of Medicine at Mount Sinai reveals that all generative AI models may...

Generative AI's Diagnostic Capabili…

The use of generative AI for diagnostics has attracted attention in the medical field and many research papers have been published on this topic. However, because the evaluation criteria were...

New System for the Early Detection of Au…

A team from the Human-Tech Institute-Universitat Politècnica de València has developed a new system for the early detection of Autism Spectrum Disorder (ASD) using virtual reality and artificial intelligence. The...

Diagnoses and Treatment Recommendations …

A new study led by Prof. Dan Zeltzer, a digital health expert from the Berglas School of Economics at Tel Aviv University, compared the quality of diagnostic and treatment recommendations...

AI Tool can Track Effectiveness of Multi…

A new artificial intelligence (AI) tool that can help interpret and assess how well treatments are working for patients with multiple sclerosis (MS) has been developed by UCL researchers. AI uses...

Surrey and Sussex Healthcare NHS Trust g…

Surrey and Sussex Healthcare NHS Trust has marked an important milestone in connecting busy radiologists across large parts of South East England, following the successful go live of Sectra's enterprise...

DMEA 2025 Ends with Record Attendance an…

8 - 10 April 2025, Berlin, Germany. DMEA 2025 came to a successful close with record attendance and an impressive program. 20,500 participants attended Europe's leading digital health event over the...

Dr Jason Broch Joins the Highland Market…

The Highland Marketing advisory board has welcomed a new member - Dr Jason Broch, a GP and director with a strong track record in the NHS and IT-enabled transformation. Dr Broch...

AI-Driven Smart Devices to Transform Hea…

AI-powered, internet-connected medical devices have the potential to revolutionise healthcare by enabling early disease detection, real-time patient monitoring, and personalised treatments, a new study suggests. They are already saving lives...

Multi-Resistance in Bacteria Predicted b…

An AI model trained on large amounts of genetic data can predict whether bacteria will become antibiotic-resistant. The new study shows that antibiotic resistance is more easily transmitted between genetically...