Deep Learning Model Accurately Diagnoses COPD

Using just one inhalation lung CT scan, a deep learning model can accurately diagnose and stage chronic obstructive pulmonary disease (COPD), according to a study published today in Radiology: Cardiothoracic Imaging, a journal of the Radiological Society of North America (RSNA).

COPD is a group of progressive lung diseases that impair a person's ability to breathe. Symptoms typically involve shortness of breath and fatigue. There currently is no cure for COPD, and it is the third leading cause of death worldwide, according to the World Health Organization.

A spirometry test, also known as a pulmonary function test, is traditionally used to diagnose COPD. It measures lung function through the quantity of air that can be inhaled and exhaled as well as the speed of exhalation.

CT images of the lungs can aid in COPD diagnosis. The procedure typically requires two image acquisitions, one at full inhalation, called inspiratory, and one at normal exhalation, called expiratory.

"Although studies have recently shown that lung structure, quantitatively measured using lung CT, can supplement COPD severity staging, diagnosis and prognosis, many of these studies require the acquisition of two CT images," said study author Kyle A. Hasenstab, Ph.D., assistant professor of Statistics and Data Science at San Diego State University, California. "However, this type of protocol is not clinically standard across institutions."

Some hospitals are unable to implement expiratory CT protocols due to the added training requirements.

"Implementation of expiratory CT protocols may not be feasible at many institutions due to the need for technologist training to acquire the images and radiologist training to interpret the images," Dr. Hasenstab said.

Additionally, some elderly patients with impaired lung function struggle with holding their breath, as is required during exhalation image acquisition. This may impact the quality of CT images and the accuracy of diagnosis.

Dr. Hasenstab and colleagues hypothesized that a single inhalation CT acquisition combined with a convolutional neural network (CNN), and clinical data would be sufficient for COPD diagnosis and staging. A CNN is a type of artificial neural network that uses deep learning to analyze and classify images.

In this retrospective study, the inhalation and exhalation lung CT images and spirometry data were acquired from 8,893 patients from November 2007 to April 2011. The average age of the patients included in the study was 59 years and all had a history of smoking.

The CNN was trained to predict spirometry measurements using clinical data and either a single-phase or multi-phase lung CT.

The spirometry predictions were then used to predict the Global Initiative for Obstruct Lung Disease (GOLD) stage. The GOLD system classifies the severity of a patient’s COPD into one of four stages, with one classified as mild COPD and four classified as very severe COPD.

The results of the study showed that a CNN model developed using only a single respiratory phase CT image accurately diagnosed COPD and was also accurate within one GOLD stage.

The model performed similarly to COPD diagnoses that used combined inhalation and exhalation CT measurements.

"Although many imaging protocols for COPD diagnosis and staging require two CT acquisitions, our study shows that COPD diagnosis and staging is feasible with a single CT acquisition and relevant clinical data," Dr. Hasenstab said.

When clinical data was added, the CNN model’s predictions were even more accurate.

CNN models that used only inhalation or exhalation data respectively performed the same. This suggests that certain markers used for COPD diagnosis may overlap across images.

"Reduction to a single inspiratory CT acquisition can increase accessibility to this diagnostic approach while reducing patient cost, discomfort and exposure to ionizing radiation," Dr. Hasenstab said.

Lee AN, Hsiao A, Hasenstab KA.
Evaluating the Cumulative Benefit of Inspiratory CT, Expiratory CT, and Clinical Data for COPD Diagnosis and Staging through Deep Learning.
Radiol Cardiothorac Imaging. 2024 Dec;6(6):e240005. doi: 10.1148/ryct.240005

Most Popular Now

AI Catches One-Third of Interval Breast …

An AI algorithm for breast cancer screening has potential to enhance the performance of digital breast tomosynthesis (DBT), reducing interval cancers by up to one-third, according to a study published...

Great plan: Now We need to Get Real abou…

The government's big plan for the 10 Year Health Plan for the NHS laid out a big role for delivery. However, the Highland Marketing advisory board felt the missing implementation...

Researchers Create 'Virtual Scienti…

There may be a new artificial intelligence-driven tool to turbocharge scientific discovery: virtual labs. Modeled after a well-established Stanford School of Medicine research group, the virtual lab is complete with an...

From WebMD to AI Chatbots: How Innovatio…

A new research article published in the Journal of Participatory Medicine unveils how successive waves of digital technology innovation have empowered patients, fostering a more collaborative and responsive health care...

New AI Tool Accelerates mRNA-Based Treat…

A new artificial intelligence (AI) model can improve the process of drug and vaccine discovery by predicting how efficiently specific mRNA sequences will produce proteins, both generally and in various...

Can Amazon Alexa or Google Home Help Det…

Computer scientists at the University of Rochester have developed an AI-powered, speech-based screening tool that can help people assess whether they are showing signs of Parkinson’s disease, the fastest growing...

AI also Assesses Dutch Mammograms Better…

AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by...

RSNA AI Challenge Models can Independent…

Algorithms submitted for an AI Challenge hosted by the Radiological Society of North America (RSNA) have shown excellent performance for detecting breast cancers on mammography images, increasing screening sensitivity while...

AI could Help Emergency Rooms Predict Ad…

Artificial intelligence (AI) can help emergency department (ED) teams better anticipate which patients will need hospital admission, hours earlier than is currently possible, according to a multi-hospital study by the...

Head-to-Head Against AI, Pharmacy Studen…

Students pursuing a Doctor of Pharmacy degree routinely take - and pass - rigorous exams to prove competency in several areas. Can ChatGPT accurately answer the same questions? A new...

NHS Active 10 Walking Tracker Users are …

Users of the NHS Active 10 app, designed to encourage people to become more active, immediately increased their amount of brisk and non-brisk walking upon using the app, according to...

The Human Touch of Doctors will Still be…

AI-based medicine will revolutionise care including for Alzheimer’s and diabetes, predicts a technology expert, but it must be accessible to all patients. Healing with Artificial Intelligence, written by technology expert Daniele...