Research Study Shows the Cost-Effectiveness of AI-Enhanced Heart Failure Screening

Earlier research showed that primary care clinicians using AI-ECG tools identified more unknown cases of a weak heart pump, also called low ejection fraction, than without AI. New study findings published in Mayo Clinic Proceedings: Digital Health suggest that this type of screening is also cost-effective in the long term, especially in outpatient settings.

Incremental drops in heart function are treatable with medication but can be hard to spot. Patients may or may not have symptoms when their heart is not pumping effectively, and doctors may not order an echocardiogram or other diagnostic test to check ejection fraction unless there are symptoms. Peter Noseworthy, M.D., a Mayo Clinic cardiologist and co-author of the study, notes that using AI to catch the hidden signals of heart failure during a routine visit can mean earlier treatment for patients, delaying or stopping disease progression, and fewer related medical costs over time.

According to the study, the cost-effectiveness ratio of using AI-ECG was $27,858 per quality-adjusted life year - a measure of the quality of life and years lived. The program was especially cost-effective in outpatient settings, with a much lower cost-effectiveness ratio of $1,651 per quality-adjusted life year.

The researchers studied the economic impact of using the AI-ECG tool by using real-world information from 22,000 participants in the established EAGLE trial and following which patients had weak heart pumps and which did not. They simulated the progression of disease in the longer term, assigning values for the health burden on patients and the resulting effect on economic value.

"We categorized patients as either AI-ECG positive, meaning we would recommend further testing for low ejection fraction, or AI-ECG negative with no further tests needed. Then we followed the normal path of care and looked at what that would cost. Did they have an echocardiogram? Did they stay healthy or develop heart failure later and need hospitalization? We considered different scenarios, costs and patient outcomes," says Xiaoxi Yao, Ph.D., a professor of Health Services Research at Mayo Clinic.

Dr. Yao, who is the senior author of the study, notes that cost-effectiveness is an important aspect of the evaluation of AI technologies when considering what to implement in clinical practice.

"We know that earlier diagnosis can lead to better and more cost-effective treatment options. To get there, we have been establishing a framework for AI evaluation and implementation. The next step is finding ways to streamline this process so we can reduce the time and resources required for such rigorous evaluation," says Dr. Yao.

This study was funded by Mayo Clinic Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery. Mayo Clinic and some of the researchers have a financial interest in the technology referenced in this news release. Mayo Clinic will use any revenue it receives to support its not-for-profit mission in patient care, education and research.

Viengneesee Thao, Ye Zhu, Andrew S Tseng, Jonathan W Inselman, Bijan J Borah, Rozalina G McCoy, Zachi I Attia, Francisco Lopez-Jimenez, Patricia A Pellikka, David R Rushlow, Paul A Friedman, Peter A Noseworthy, Xiaoxi Yao.
Cost-Effectiveness of Artificial Intelligence-Enabled Electrocardiograms for Early Detection of Low Ejection Fraction: A Secondary Analysis of the Electrocardiogram Artificial Intelligence-Guided Screening for Low Ejection Fraction Trial.
Mayo Clinic Proceedings: Digital Health, 2024. doi: 10.1016/j.mcpdig.2024.10.001

Most Popular Now

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

Are You Eligible for a Clinical Trial? C…

A new study in the academic journal Machine Learning: Health discovers that ChatGPT can accelerate patient screening for clinical trials, showing promise in reducing delays and improving trial success rates. Researchers...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...

Global Study Reveals How Patients View M…

How physicians feel about artificial intelligence (AI) in medicine has been studied many times. But what do patients think? A team led by researchers at the Technical University of Munich...