New Guidance for Ensuring AI Safety in Clinical Care Published in JAMA

As artificial intelligence (AI) becomes more prevalent in health care, organizations and clinicians must take steps to ensure its safe implementation and use in real-world clinical settings, according to an article co-written by Dean Sittig, PhD, professor with McWilliams School of Biomedical Informatics at UTHealth Houston and Hardeep Singh, MD, MPH, professor at Baylor College of Medicine.

The guidance was published, Nov. 27, 2024, in the Journal of the American Medical Association.

"We often hear about the need for AI to be built safely, but not about how to use it safely in health care settings," Sittig said. "It is a tool that has the potential to revolutionize medical care, but without safeguards in place, AI could generate false or misleading outputs that could potentially harm patients if left unchecked."

Drawing from expert opinion, literature reviews, and experiences with health IT use and safety assessment, Sittig and Singh developed a pragmatic approach for health care organizations and clinicians to monitor and manage AI systems.

"Health care delivery organizations will need to implement robust governance systems and testing processes locally to ensure safe AI and safe use of AI so that ultimately AI can be used to improve the safety of health care and patient outcomes," Singh said. "All health care delivery organizations should check out these recommendations and start proactively preparing for AI now."

Some of the recommended actions for health care organizations are listed below:

  • Review guidance published in high-quality, peer-reviewed journals and conduct rigorous real-world testing to confirm AI’s safety and effectiveness.
  • Establish dedicated committees with multidisciplinary experts to oversee AI system deployment and ensure adherence to safety protocols. Committee members should meet regularly to review requests for new AI applications, consider their safety and effectiveness before implementing them, and develop processes to monitor their performance.
  • Formally train clinicians on AI usage and risk, but also be transparent with patients when AI is part of their care decisions. This transparency is key to building trust and confidence in AI's role in health care.
  • Maintain a detailed inventory of AI systems and regularly evaluate them to identify and mitigate any risks.
  • Develop procedures to turn off AI systems should they malfunction, ensuring smooth transitions back to manual processes.

"Implementing AI into clinical settings should be a shared responsibility among health care providers, AI developers, and electronic health record vendors to protect patients," Sittig said. "By working together, we can build trust and promote the safe adoption of AI in health care."

Sittig DF, Singh H.
Recommendations to Ensure Safety of AI in Real-World Clinical Care.
JAMA. 2024 Nov 27. doi: 10.1001/jama.2024.24598

Most Popular Now

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

Are You Eligible for a Clinical Trial? C…

A new study in the academic journal Machine Learning: Health discovers that ChatGPT can accelerate patient screening for clinical trials, showing promise in reducing delays and improving trial success rates. Researchers...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...

Global Study Reveals How Patients View M…

How physicians feel about artificial intelligence (AI) in medicine has been studied many times. But what do patients think? A team led by researchers at the Technical University of Munich...