New Guidance for Ensuring AI Safety in Clinical Care Published in JAMA

As artificial intelligence (AI) becomes more prevalent in health care, organizations and clinicians must take steps to ensure its safe implementation and use in real-world clinical settings, according to an article co-written by Dean Sittig, PhD, professor with McWilliams School of Biomedical Informatics at UTHealth Houston and Hardeep Singh, MD, MPH, professor at Baylor College of Medicine.

The guidance was published, Nov. 27, 2024, in the Journal of the American Medical Association.

"We often hear about the need for AI to be built safely, but not about how to use it safely in health care settings," Sittig said. "It is a tool that has the potential to revolutionize medical care, but without safeguards in place, AI could generate false or misleading outputs that could potentially harm patients if left unchecked."

Drawing from expert opinion, literature reviews, and experiences with health IT use and safety assessment, Sittig and Singh developed a pragmatic approach for health care organizations and clinicians to monitor and manage AI systems.

"Health care delivery organizations will need to implement robust governance systems and testing processes locally to ensure safe AI and safe use of AI so that ultimately AI can be used to improve the safety of health care and patient outcomes," Singh said. "All health care delivery organizations should check out these recommendations and start proactively preparing for AI now."

Some of the recommended actions for health care organizations are listed below:

  • Review guidance published in high-quality, peer-reviewed journals and conduct rigorous real-world testing to confirm AI’s safety and effectiveness.
  • Establish dedicated committees with multidisciplinary experts to oversee AI system deployment and ensure adherence to safety protocols. Committee members should meet regularly to review requests for new AI applications, consider their safety and effectiveness before implementing them, and develop processes to monitor their performance.
  • Formally train clinicians on AI usage and risk, but also be transparent with patients when AI is part of their care decisions. This transparency is key to building trust and confidence in AI's role in health care.
  • Maintain a detailed inventory of AI systems and regularly evaluate them to identify and mitigate any risks.
  • Develop procedures to turn off AI systems should they malfunction, ensuring smooth transitions back to manual processes.

"Implementing AI into clinical settings should be a shared responsibility among health care providers, AI developers, and electronic health record vendors to protect patients," Sittig said. "By working together, we can build trust and promote the safe adoption of AI in health care."

Sittig DF, Singh H.
Recommendations to Ensure Safety of AI in Real-World Clinical Care.
JAMA. 2024 Nov 27. doi: 10.1001/jama.2024.24598

Most Popular Now

Stepping Hill Hospital Announced as SPAR…

Stepping Hill Hospital, part of Stockport NHS Foundation Trust, has replaced its bedside units with state-of-the art devices running a full range of information, engagement, communications and productivity apps, to...

DMEA 2025: Digital Health Worldwide in B…

8 - 10 April 2025, Berlin, Germany. From the AI Act, to the potential of the European Health Data Space, to the power of patient data in Scandinavia - DMEA 2025...

Is AI in Medicine Playing Fair?

As artificial intelligence (AI) rapidly integrates into health care, a new study by researchers at the Icahn School of Medicine at Mount Sinai reveals that all generative AI models may...

Generative AI's Diagnostic Capabili…

The use of generative AI for diagnostics has attracted attention in the medical field and many research papers have been published on this topic. However, because the evaluation criteria were...

New System for the Early Detection of Au…

A team from the Human-Tech Institute-Universitat Politècnica de València has developed a new system for the early detection of Autism Spectrum Disorder (ASD) using virtual reality and artificial intelligence. The...

Diagnoses and Treatment Recommendations …

A new study led by Prof. Dan Zeltzer, a digital health expert from the Berglas School of Economics at Tel Aviv University, compared the quality of diagnostic and treatment recommendations...

AI Tool can Track Effectiveness of Multi…

A new artificial intelligence (AI) tool that can help interpret and assess how well treatments are working for patients with multiple sclerosis (MS) has been developed by UCL researchers. AI uses...

Surrey and Sussex Healthcare NHS Trust g…

Surrey and Sussex Healthcare NHS Trust has marked an important milestone in connecting busy radiologists across large parts of South East England, following the successful go live of Sectra's enterprise...

DMEA 2025 Ends with Record Attendance an…

8 - 10 April 2025, Berlin, Germany. DMEA 2025 came to a successful close with record attendance and an impressive program. 20,500 participants attended Europe's leading digital health event over the...

Dr Jason Broch Joins the Highland Market…

The Highland Marketing advisory board has welcomed a new member - Dr Jason Broch, a GP and director with a strong track record in the NHS and IT-enabled transformation. Dr Broch...

AI-Driven Smart Devices to Transform Hea…

AI-powered, internet-connected medical devices have the potential to revolutionise healthcare by enabling early disease detection, real-time patient monitoring, and personalised treatments, a new study suggests. They are already saving lives...

Multi-Resistance in Bacteria Predicted b…

An AI model trained on large amounts of genetic data can predict whether bacteria will become antibiotic-resistant. The new study shows that antibiotic resistance is more easily transmitted between genetically...