New Guidance for Ensuring AI Safety in Clinical Care Published in JAMA

As artificial intelligence (AI) becomes more prevalent in health care, organizations and clinicians must take steps to ensure its safe implementation and use in real-world clinical settings, according to an article co-written by Dean Sittig, PhD, professor with McWilliams School of Biomedical Informatics at UTHealth Houston and Hardeep Singh, MD, MPH, professor at Baylor College of Medicine.

The guidance was published, Nov. 27, 2024, in the Journal of the American Medical Association.

"We often hear about the need for AI to be built safely, but not about how to use it safely in health care settings," Sittig said. "It is a tool that has the potential to revolutionize medical care, but without safeguards in place, AI could generate false or misleading outputs that could potentially harm patients if left unchecked."

Drawing from expert opinion, literature reviews, and experiences with health IT use and safety assessment, Sittig and Singh developed a pragmatic approach for health care organizations and clinicians to monitor and manage AI systems.

"Health care delivery organizations will need to implement robust governance systems and testing processes locally to ensure safe AI and safe use of AI so that ultimately AI can be used to improve the safety of health care and patient outcomes," Singh said. "All health care delivery organizations should check out these recommendations and start proactively preparing for AI now."

Some of the recommended actions for health care organizations are listed below:

  • Review guidance published in high-quality, peer-reviewed journals and conduct rigorous real-world testing to confirm AI’s safety and effectiveness.
  • Establish dedicated committees with multidisciplinary experts to oversee AI system deployment and ensure adherence to safety protocols. Committee members should meet regularly to review requests for new AI applications, consider their safety and effectiveness before implementing them, and develop processes to monitor their performance.
  • Formally train clinicians on AI usage and risk, but also be transparent with patients when AI is part of their care decisions. This transparency is key to building trust and confidence in AI's role in health care.
  • Maintain a detailed inventory of AI systems and regularly evaluate them to identify and mitigate any risks.
  • Develop procedures to turn off AI systems should they malfunction, ensuring smooth transitions back to manual processes.

"Implementing AI into clinical settings should be a shared responsibility among health care providers, AI developers, and electronic health record vendors to protect patients," Sittig said. "By working together, we can build trust and promote the safe adoption of AI in health care."

Sittig DF, Singh H.
Recommendations to Ensure Safety of AI in Real-World Clinical Care.
JAMA. 2024 Nov 27. doi: 10.1001/jama.2024.24598

Most Popular Now

Philips Foundation 2024 Annual Report: E…

Marking its tenth anniversary, Philips Foundation released its 2024 Annual Report, highlighting a year in which the Philips Foundation helped provide access to quality healthcare for 46.5 million people around...

New AI Transforms Radiology with Speed, …

A first-of-its-kind generative AI system, developed in-house at Northwestern Medicine, is revolutionizing radiology - boosting productivity, identifying life-threatening conditions in milliseconds and offering a breakthrough solution to the global radiologist...

Scientists Argue for More FDA Oversight …

An agile, transparent, and ethics-driven oversight system is needed for the U.S. Food and Drug Administration (FDA) to balance innovation with patient safety when it comes to artificial intelligence-driven medical...

New Research Finds Specific Learning Str…

If data used to train artificial intelligence models for medical applications, such as hospitals across the Greater Toronto Area, differs from the real-world data, it could lead to patient harm...

Giving Doctors an AI-Powered Head Start …

Detection of melanoma and a range of other skin diseases will be faster and more accurate with a new artificial intelligence (AI) powered tool that analyses multiple imaging types simultaneously...

AI Agents for Oncology

Clinical decision-making in oncology is challenging and requires the analysis of various data types - from medical imaging and genetic information to patient records and treatment guidelines. To effectively support...

Patients say "Yes..ish" to the…

As artificial intelligence (AI) continues to be integrated in healthcare, a new multinational study involving Aarhus University sheds light on how dental patients really feel about its growing role in...

Brains vs. Bytes: Study Compares Diagnos…

A University of Maine study compared how well artificial intelligence (AI) models and human clinicians handled complex or sensitive medical cases. The study published in the Journal of Health Organization...

'AI Scientist' Suggests Combin…

An 'AI scientist', working in collaboration with human scientists, has found that combinations of cheap and safe drugs - used to treat conditions such as high cholesterol and alcohol dependence...

Start-ups in the Spotlight at MEDICA 202…

17 - 20 November 2025, Düsseldorf, Germany. MEDICA, the leading international trade fair and platform for healthcare innovations, will once again confirm its position as the world's number one hotspot for...