AI can Predict Study Results Better than Human Experts

Large language models, a type of AI that analyses text, can predict the results of proposed neuroscience studies more accurately than human experts, finds a new study led by UCL (University College London) researchers.

The findings, published in Nature Human Behaviour, demonstrate that large language models (LLMs) trained on vast datasets of text can distil patterns from scientific literature, enabling them to forecast scientific outcomes with superhuman accuracy.

The researchers say this highlights their potential as powerful tools for accelerating research, going far beyond just knowledge retrieval.

Lead author Dr Ken Luo (UCL Psychology & Language Sciences) said: “Since the advent of generative AI like ChatGPT, much research has focused on LLMs' question-answering capabilities, showcasing their remarkable skill in summarising knowledge from extensive training data. However, rather than emphasising their backward-looking ability to retrieve past information, we explored whether LLMs could synthesise knowledge to predict future outcomes.

"Scientific progress often relies on trial and error, but each meticulous experiment demands time and resources. Even the most skilled researchers may overlook critical insights from the literature. Our work investigates whether LLMs can identify patterns across vast scientific texts and forecast outcomes of experiments."

The international research team began their study by developing BrainBench, a tool to evaluate how well large language models (LLMs) can predict neuroscience results.

BrainBench consists of numerous pairs of neuroscience study abstracts. In each pair, one version is a real study abstract that briefly describes the background of the research, the methods used, and the study results. In the other version, the background and methods are the same, but the results have been modified by experts in the relevant neuroscience domain to a plausible but incorrect outcome.

The researchers tested 15 different general-purpose LLMs and 171 human neuroscience experts (who had all passed a screening test to confirm their expertise) to see whether the AI or the person could correctly determine which of the two paired abstracts was the real one with the actual study results.

All of the LLMs outperformed the neuroscientists, with the LLMs averaging 81% accuracy and the humans averaging 63% accuracy. Even when the study team restricted the human responses to only those with the highest degree of expertise for a given domain of neuroscience (based on self-reported expertise), the accuracy of the neuroscientists still fell short of the LLMs, at 66%. Additionally, the researchers found that when LLMs were more confident in their decisions, they were more likely to be correct.* The researchers say this finding paves the way for a future where human experts could collaborate with well-calibrated models.

The researchers then adapted an existing LLM (a version of Mistral, an open-source LLM) by training it on neuroscience literature specifically. The new LLM specialising in neuroscience, which they dubbed BrainGPT, was even better at predicting study results, attaining 86% accuracy (an improvement on the general-purpose version of Mistral, which was 83% accurate).

Senior author Professor Bradley Love (UCL Psychology & Language Sciences) said: “In light of our results, we suspect it won’t be long before scientists are using AI tools to design the most effective experiment for their question. While our study focused on neuroscience, our approach was universal and should successfully apply across all of science.

"What is remarkable is how well LLMs can predict the neuroscience literature. This success suggests that a great deal of science is not truly novel, but conforms to existing patterns of results in the literature. We wonder whether scientists are being sufficiently innovative and exploratory."

Dr Luo added: "Building on our results, we are developing AI tools to assist researchers. We envision a future where researchers can input their proposed experiment designs and anticipated findings, with AI offering predictions on the likelihood of various outcomes. This would enable faster iteration and more informed decision-making in experiment design."

The study was supported by the Economic and Social Research Council (ESRC), Microsoft, and a Royal Society Wolfson Fellowship, and involved researchers in UCL, University of Cambridge, University of Oxford, Max Planck Institute for Neurobiology of Behavior (Germany), Bilkent University (Turkey) and other institutions in the UK, US, Switzerland, Russia, Germany, Belgium, Denmark, Canada, Spain and Australia.

Luo X, Rechardt A, Sun G, Nejad KK, Yáñez F, Yilmaz B, Lee K, Cohen AO, Borghesani V, Pashkov A, Marinazzo D, Nicholas J, Salatiello A, Sucholutsky I, Minervini P, Razavi S, Rocca R, Yusifov E, Okalova T, Gu N, Ferianc M, Khona M, Patil KR, Lee PS, Mata R, Myers NE, Bizley JK, Musslick S, Bilgin IP, Niso G, Ales JM, Gaebler M, Ratan Murty NA, Loued-Khenissi L, Behler A, Hall CM, Dafflon J, Bao SD, Love BC.
Large language models surpass human experts in predicting neuroscience results.
Nat Hum Behav. 2024 Nov 27. doi: 10.1038/s41562-024-02046-9

* When presented with two abstracts, the LLM computes the likelihood of each, assigning a perplexity score to represent how surprising each is based on its own learned knowledge as well as the context (background and method). The researchers assessed LLMs' confidence by measuring the difference in how surprising/perplexing the models found real versus fake abstracts - the greater this difference, the greater the confidence, which correlated with a higher likelihood the LLM had picked the correct abstract.

Most Popular Now

Stepping Hill Hospital Announced as SPAR…

Stepping Hill Hospital, part of Stockport NHS Foundation Trust, has replaced its bedside units with state-of-the art devices running a full range of information, engagement, communications and productivity apps, to...

DMEA 2025: Digital Health Worldwide in B…

8 - 10 April 2025, Berlin, Germany. From the AI Act, to the potential of the European Health Data Space, to the power of patient data in Scandinavia - DMEA 2025...

Is AI in Medicine Playing Fair?

As artificial intelligence (AI) rapidly integrates into health care, a new study by researchers at the Icahn School of Medicine at Mount Sinai reveals that all generative AI models may...

Generative AI's Diagnostic Capabili…

The use of generative AI for diagnostics has attracted attention in the medical field and many research papers have been published on this topic. However, because the evaluation criteria were...

New System for the Early Detection of Au…

A team from the Human-Tech Institute-Universitat Politècnica de València has developed a new system for the early detection of Autism Spectrum Disorder (ASD) using virtual reality and artificial intelligence. The...

Diagnoses and Treatment Recommendations …

A new study led by Prof. Dan Zeltzer, a digital health expert from the Berglas School of Economics at Tel Aviv University, compared the quality of diagnostic and treatment recommendations...

AI Tool can Track Effectiveness of Multi…

A new artificial intelligence (AI) tool that can help interpret and assess how well treatments are working for patients with multiple sclerosis (MS) has been developed by UCL researchers. AI uses...

Surrey and Sussex Healthcare NHS Trust g…

Surrey and Sussex Healthcare NHS Trust has marked an important milestone in connecting busy radiologists across large parts of South East England, following the successful go live of Sectra's enterprise...

DMEA 2025 Ends with Record Attendance an…

8 - 10 April 2025, Berlin, Germany. DMEA 2025 came to a successful close with record attendance and an impressive program. 20,500 participants attended Europe's leading digital health event over the...

Dr Jason Broch Joins the Highland Market…

The Highland Marketing advisory board has welcomed a new member - Dr Jason Broch, a GP and director with a strong track record in the NHS and IT-enabled transformation. Dr Broch...

AI-Driven Smart Devices to Transform Hea…

AI-powered, internet-connected medical devices have the potential to revolutionise healthcare by enabling early disease detection, real-time patient monitoring, and personalised treatments, a new study suggests. They are already saving lives...

Multi-Resistance in Bacteria Predicted b…

An AI model trained on large amounts of genetic data can predict whether bacteria will become antibiotic-resistant. The new study shows that antibiotic resistance is more easily transmitted between genetically...