Using AI to Treat Infections more Accurately

New research from the Centres for Antimicrobial Optimisation Network (CAMO-Net) at the University of Liverpool has shown that using artificial intelligence (AI) can improve how we treat urinary tract infections (UTIs), and help to address antimicrobial resistance (AMR).

AMR occurs when bacteria, viruses, fungi, and parasites evolve and no longer respond to treatments that were once effective. This resistance leads to longer hospital stays, higher medical costs, and increased mortality rates, posing a significant threat to public health and potentially rendering common infections untreatable.

Traditional UTI diagnostic tests, known as antimicrobial susceptibility testing (AST), uses a one-size-fits-all approach to determine which antibiotics are most effective against a specific bacterial or fungal infection. This new research, published in Nature Communications, proposes a personalised method, using real-time data to help clinicians target infections more accurately and reduce the chance of bacteria becoming resistant to antibiotic treatment.

The research, led by Dr Alex Howard, a consultant in medical microbiology at the University of Liverpool and researcher on the Wellcome Trust funded CAMO-Net, used AI to test prediction models for 12 antibiotics using real patient data and compared personalised AST with standard methods. The data-driven personalised approach led to more accurate treatment options, especially with WHO Access antibiotics, known for being less likely to cause resistance.

Dr Alex Howard, said: "This research is important and timely for World AMR Awareness Week because it shows how combining routine health data with lab tests can help keep antibiotics working. By using AI to predict when people with urine infections have antibiotic-resistant bugs, we show how lab tests can better direct their antibiotic treatment. This approach could improve the care of people with infections worldwide and help prevent the spread of antibiotic resistance."

The results of this study represent a significant step forward in addressing AMR. By prioritising WHO access category antibiotics and tailoring treatment to individual susceptibility profiles, the personalised AST approach not only improves the efficiency of the testing process but also supports global efforts to preserve the effectiveness of critical antibiotics.

Howard A, Hughes DM, Green PL, Velluva A, Gerada A, Maskell S, Buchan IE, Hope W.
Personalised antimicrobial susceptibility testing with clinical prediction modelling informs appropriate antibiotic use.
Nat Commun. 2024 Nov 21;15(1):9924. doi: 10.1038/s41467-024-54192-3

Most Popular Now

AI Catches One-Third of Interval Breast …

An AI algorithm for breast cancer screening has potential to enhance the performance of digital breast tomosynthesis (DBT), reducing interval cancers by up to one-third, according to a study published...

Great plan: Now We need to Get Real abou…

The government's big plan for the 10 Year Health Plan for the NHS laid out a big role for delivery. However, the Highland Marketing advisory board felt the missing implementation...

Researchers Create 'Virtual Scienti…

There may be a new artificial intelligence-driven tool to turbocharge scientific discovery: virtual labs. Modeled after a well-established Stanford School of Medicine research group, the virtual lab is complete with an...

From WebMD to AI Chatbots: How Innovatio…

A new research article published in the Journal of Participatory Medicine unveils how successive waves of digital technology innovation have empowered patients, fostering a more collaborative and responsive health care...

New AI Tool Accelerates mRNA-Based Treat…

A new artificial intelligence (AI) model can improve the process of drug and vaccine discovery by predicting how efficiently specific mRNA sequences will produce proteins, both generally and in various...

Can Amazon Alexa or Google Home Help Det…

Computer scientists at the University of Rochester have developed an AI-powered, speech-based screening tool that can help people assess whether they are showing signs of Parkinson’s disease, the fastest growing...

AI also Assesses Dutch Mammograms Better…

AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by...

RSNA AI Challenge Models can Independent…

Algorithms submitted for an AI Challenge hosted by the Radiological Society of North America (RSNA) have shown excellent performance for detecting breast cancers on mammography images, increasing screening sensitivity while...

AI could Help Emergency Rooms Predict Ad…

Artificial intelligence (AI) can help emergency department (ED) teams better anticipate which patients will need hospital admission, hours earlier than is currently possible, according to a multi-hospital study by the...

Head-to-Head Against AI, Pharmacy Studen…

Students pursuing a Doctor of Pharmacy degree routinely take - and pass - rigorous exams to prove competency in several areas. Can ChatGPT accurately answer the same questions? A new...

NHS Active 10 Walking Tracker Users are …

Users of the NHS Active 10 app, designed to encourage people to become more active, immediately increased their amount of brisk and non-brisk walking upon using the app, according to...

The Human Touch of Doctors will Still be…

AI-based medicine will revolutionise care including for Alzheimer’s and diabetes, predicts a technology expert, but it must be accessible to all patients. Healing with Artificial Intelligence, written by technology expert Daniele...