Using AI to Treat Infections more Accurately

New research from the Centres for Antimicrobial Optimisation Network (CAMO-Net) at the University of Liverpool has shown that using artificial intelligence (AI) can improve how we treat urinary tract infections (UTIs), and help to address antimicrobial resistance (AMR).

AMR occurs when bacteria, viruses, fungi, and parasites evolve and no longer respond to treatments that were once effective. This resistance leads to longer hospital stays, higher medical costs, and increased mortality rates, posing a significant threat to public health and potentially rendering common infections untreatable.

Traditional UTI diagnostic tests, known as antimicrobial susceptibility testing (AST), uses a one-size-fits-all approach to determine which antibiotics are most effective against a specific bacterial or fungal infection. This new research, published in Nature Communications, proposes a personalised method, using real-time data to help clinicians target infections more accurately and reduce the chance of bacteria becoming resistant to antibiotic treatment.

The research, led by Dr Alex Howard, a consultant in medical microbiology at the University of Liverpool and researcher on the Wellcome Trust funded CAMO-Net, used AI to test prediction models for 12 antibiotics using real patient data and compared personalised AST with standard methods. The data-driven personalised approach led to more accurate treatment options, especially with WHO Access antibiotics, known for being less likely to cause resistance.

Dr Alex Howard, said: "This research is important and timely for World AMR Awareness Week because it shows how combining routine health data with lab tests can help keep antibiotics working. By using AI to predict when people with urine infections have antibiotic-resistant bugs, we show how lab tests can better direct their antibiotic treatment. This approach could improve the care of people with infections worldwide and help prevent the spread of antibiotic resistance."

The results of this study represent a significant step forward in addressing AMR. By prioritising WHO access category antibiotics and tailoring treatment to individual susceptibility profiles, the personalised AST approach not only improves the efficiency of the testing process but also supports global efforts to preserve the effectiveness of critical antibiotics.

Howard A, Hughes DM, Green PL, Velluva A, Gerada A, Maskell S, Buchan IE, Hope W.
Personalised antimicrobial susceptibility testing with clinical prediction modelling informs appropriate antibiotic use.
Nat Commun. 2024 Nov 21;15(1):9924. doi: 10.1038/s41467-024-54192-3

Most Popular Now

Philips Foundation 2024 Annual Report: E…

Marking its tenth anniversary, Philips Foundation released its 2024 Annual Report, highlighting a year in which the Philips Foundation helped provide access to quality healthcare for 46.5 million people around...

New AI Transforms Radiology with Speed, …

A first-of-its-kind generative AI system, developed in-house at Northwestern Medicine, is revolutionizing radiology - boosting productivity, identifying life-threatening conditions in milliseconds and offering a breakthrough solution to the global radiologist...

Scientists Argue for More FDA Oversight …

An agile, transparent, and ethics-driven oversight system is needed for the U.S. Food and Drug Administration (FDA) to balance innovation with patient safety when it comes to artificial intelligence-driven medical...

New Research Finds Specific Learning Str…

If data used to train artificial intelligence models for medical applications, such as hospitals across the Greater Toronto Area, differs from the real-world data, it could lead to patient harm...

Giving Doctors an AI-Powered Head Start …

Detection of melanoma and a range of other skin diseases will be faster and more accurate with a new artificial intelligence (AI) powered tool that analyses multiple imaging types simultaneously...

AI Agents for Oncology

Clinical decision-making in oncology is challenging and requires the analysis of various data types - from medical imaging and genetic information to patient records and treatment guidelines. To effectively support...

Patients say "Yes..ish" to the…

As artificial intelligence (AI) continues to be integrated in healthcare, a new multinational study involving Aarhus University sheds light on how dental patients really feel about its growing role in...

Brains vs. Bytes: Study Compares Diagnos…

A University of Maine study compared how well artificial intelligence (AI) models and human clinicians handled complex or sensitive medical cases. The study published in the Journal of Health Organization...

'AI Scientist' Suggests Combin…

An 'AI scientist', working in collaboration with human scientists, has found that combinations of cheap and safe drugs - used to treat conditions such as high cholesterol and alcohol dependence...

Start-ups in the Spotlight at MEDICA 202…

17 - 20 November 2025, Düsseldorf, Germany. MEDICA, the leading international trade fair and platform for healthcare innovations, will once again confirm its position as the world's number one hotspot for...