NIH-Developed AI Algorithm Successfully Matches Potential Volunteers to Clinical Trials Release

Researchers from the National Institutes of Health (NIH) have developed an artificial intelligence (AI) algorithm to help speed up the process of matching potential volunteers to relevant clinical research trials listed on ClinicalTrials.gov. A study published in Nature Communications found that the AI algorithm, called TrialGPT, could successfully identify relevant clinical trials for which a person is eligible and provide a summary that clearly explains how that person meets the criteria for study enrollment. The researchers concluded that this tool could help clinicians navigate the vast and ever-changing range of clinical trials available to their patients, which may lead to improved clinical trial enrollment and faster progress in medical research.

A team of researchers from NIH’s National Library of Medicine (NLM) and National Cancer Institute harnessed the power of large language models (LLMs) to develop an innovative framework for TrialGPT to streamline the clinical trial matching process. TrialGPT first processes a patient summary, which contains relevant medical and demographic information. The algorithm then identifies relevant clinical trials from ClinicalTrials.gov for which a patient is eligible and excludes trials for which they are ineligible. TrialGPT then explains how the person meets the study enrollment criteria. The final output is an annotated list of clinical trials - ranked by relevance and eligibility - that clinicians can use to discuss clinical trial opportunities with their patient.

"Machine learning and AI technology have held promise in matching patients with clinical trials, but their practical application across diverse populations still needed exploration," said NLM Acting Director, Stephen Sherry, PhD. "This study shows we can responsibly leverage AI technology so physicians can connect their patients to a relevant clinical trial that may be of interest to them with even more speed and efficiency."

To assess how well TrialGPT predicted if a patient met a specific requirement for a clinical trial, the researchers compared TrialGPT's results to those of three human clinicians who assessed over 1,000 patient-criterion pairs. They found that TrialGPT achieved nearly the same level of accuracy as the clinicians.

Additionally, the researchers conducted a pilot user study, where they asked two human clinicians to review six anonymous patient summaries and match them to six clinical trials. For each patient and trial pair, one clinician was asked to manually review the patient summaries, check if the person was eligible, and decide if the patient might qualify for the trial. For the same patient-trial pair, another clinician used TrialGPT to assess the patient's eligibility. The researchers found that when clinicians use TrialGPT, they spent 40% less time screening patients but maintained the same level of accuracy.

Clinical trials uncover important medical discoveries that improve health, and potential participants often learn about these opportunities through their clinicians. However, finding the right clinical trial for interested participants is a time-consuming and resource-intensive process, which can slow down important medical research.

"Our study shows that TrialGPT could help clinicians connect their patients to clinical trial opportunities more efficiently and save precious time that can be better spent on harder tasks that require human expertise," said NLM Senior Investigator and corresponding author of the study, Zhiyong Lu, PhD.

Given the promising benchmarking results, the research team was recently selected for The Director's Challenge Innovation Award to further assess the model’s performance and fairness in real-world clinical settings. The researchers anticipate that this work could make clinical trial recruitment more effective and help reduce barriers to participation for populations underrepresented in clinical research.

Jin Q, Wang Z, Floudas CS, Chen F, Gong C, Bracken-Clarke D, Xue E, Yang Y, Sun J, Lu Z.
Matching patients to clinical trials with large language models.
Nat Commun. 2024 Nov 18;15(1):9074. doi: 10.1038/s41467-024-53081-z

Most Popular Now

Integrating Care Records is Good. Using …

Opinion Article by Dr Paul Deffley, Chief Medical Officer, Alcidion. A single patient record already exists in the NHS. Or at least, that’s a perception shared by many. A survey of...

Should AI Chatbots Replace Your Therapis…

The new study exposes the dangerous flaws in using artificial intelligence (AI) chatbots for mental health support. For the first time, the researchers evaluated these AI systems against clinical standards...

AI could Help Pathologists Match Cancer …

A new study by researchers at the Icahn School of Medicine at Mount Sinai, Memorial Sloan Kettering Cancer Center, and collaborators, suggests that artificial intelligence (AI) could significantly improve how...

AI Detects Early Signs of Osteoporosis f…

Investigators have developed an artificial intelligence-assisted diagnostic system that can estimate bone mineral density in both the lumbar spine and the femur of the upper leg, based on X-ray images...

AI Model Converts Hospital Records into …

UCLA researchers have developed an AI system that turns fragmented electronic health records (EHR) normally in tables into readable narratives, allowing artificial intelligence to make sense of complex patient histories...

AI Sharpens Pathologists' Interpret…

Pathologists' examinations of tissue samples from skin cancer tumours improved when they were assisted by an AI tool. The assessments became more consistent and patients' prognoses were described more accurately...

AI Tool Detects Surgical Site Infections…

A team of Mayo Clinic researchers has developed an artificial intelligence (AI) system that can detect surgical site infections (SSIs) with high accuracy from patient-submitted postoperative wound photos, potentially transforming...

Forging a Novel Therapeutic Path for Pat…

Rett syndrome is a devastating rare genetic childhood disorder primarily affecting girls. Merely 1 out of 10,000 girls are born with it and much fewer boys. It is caused by...

Mayo Clinic's AI Tool Identifies 9 …

Mayo Clinic researchers have developed a new artificial intelligence (AI) tool that helps clinicians identify brain activity patterns linked to nine types of dementia, including Alzheimer's disease, using a single...

AI Detects Fatty Liver Disease with Ches…

Fatty liver disease, caused by the accumulation of fat in the liver, is estimated to affect one in four people worldwide. If left untreated, it can lead to serious complications...

AI Matches Doctors in Mapping Lung Tumor…

In radiation therapy, precision can save lives. Oncologists must carefully map the size and location of a tumor before delivering high-dose radiation to destroy cancer cells while sparing healthy tissue...

Meet Your Digital Twin

Before an important meeting or when a big decision needs to be made, we often mentally run through various scenarios before settling on the best course of action. But when...