AI Analysis of PET/CT Images can Predict Side Effects of Immunotherapy in Lung Cancer

Dr. Watanabe and his teams from Niigata University have revealed that PET/CT image analysis using artificial intelligence (AI) can predict the occurrence of interstitial lung disease, known as a serious side effect of immunotherapy in lung cancer.

Immunotherapy has dramatically improved the treatment outcomes of primary lung cancer; however, it sometimes causes a serious side effect called interstitial lung disease. Interstitial lung disease is characterized by scarring (fibrosis) of the lungs and may be life-threatening owing to respiratory failure. Unfortunately, it is difficult to predict the occurrence of interstitial lung disease induced by immunotherapy. Accordingly, effective methods for predicting the risk of developing interstitial lung disease after immunotherapy are required.

This retrospective study investigated 165 patients with primary lung cancer who received immunotherapy at Niigata University Medical and Dental Hospital. As it is suggested that interstitial lung disease arises when inflammatory cells activated through immunotherapy damage healthy lung as well as cancer cells, the researchers hypothesized that patients with severe inflammation in healthy lungs prior to immunotherapy are more likely to develop interstitial lung disease after the treatment. Dr. Watanabe and his teams focused on PET/CT scan, a nuclear imaging test that is able to detect inflammation in the whole body. The researchers quantified the degree of inflammation in noncancerous lungs, namely lung regions without cancer, using AI analysis of PET/CT images. The study demonstrated that the risk of developing interstitial lung disease after immunotherapy is approximately 6.5 times higher in patients with high inflammation in the noncancerous lung than in those with low inflammation.

Dr. Yamazaki says "PET/CT is generally performed to detect cancer metastasis, but it would potentially be useful for estimating the risks of side effects associated with cancer treatment. The results of our study may not only help to predict the occurrence of interstitial lung disease after immunotherapy, but also to elucidate the mechanism of this serious side effect. We should conduct a multicenter prospective study for further investigation."

Yamazaki M, Watanabe S, Tominaga M, Yagi T, Goto Y, Yanagimura N, Arita M, Ohtsubo A, Tanaka T, Nozaki K, Saida Y, Kondo R, Kikuchi T, Ishikawa H.
18F-FDG-PET/CT Uptake by Noncancerous Lung as a Predictor of Interstitial Lung Disease Induced by Immune Checkpoint Inhibitors.
Acad Radiol. 2024 Sep 2:S1076-6332(24)00606-8. doi: 10.1016/j.acra.2024.08.043

Most Popular Now

Stepping Hill Hospital Announced as SPAR…

Stepping Hill Hospital, part of Stockport NHS Foundation Trust, has replaced its bedside units with state-of-the art devices running a full range of information, engagement, communications and productivity apps, to...

DMEA 2025: Digital Health Worldwide in B…

8 - 10 April 2025, Berlin, Germany. From the AI Act, to the potential of the European Health Data Space, to the power of patient data in Scandinavia - DMEA 2025...

Is AI in Medicine Playing Fair?

As artificial intelligence (AI) rapidly integrates into health care, a new study by researchers at the Icahn School of Medicine at Mount Sinai reveals that all generative AI models may...

Generative AI's Diagnostic Capabili…

The use of generative AI for diagnostics has attracted attention in the medical field and many research papers have been published on this topic. However, because the evaluation criteria were...

New System for the Early Detection of Au…

A team from the Human-Tech Institute-Universitat Politècnica de València has developed a new system for the early detection of Autism Spectrum Disorder (ASD) using virtual reality and artificial intelligence. The...

Diagnoses and Treatment Recommendations …

A new study led by Prof. Dan Zeltzer, a digital health expert from the Berglas School of Economics at Tel Aviv University, compared the quality of diagnostic and treatment recommendations...

AI Tool can Track Effectiveness of Multi…

A new artificial intelligence (AI) tool that can help interpret and assess how well treatments are working for patients with multiple sclerosis (MS) has been developed by UCL researchers. AI uses...

Surrey and Sussex Healthcare NHS Trust g…

Surrey and Sussex Healthcare NHS Trust has marked an important milestone in connecting busy radiologists across large parts of South East England, following the successful go live of Sectra's enterprise...

Dr Jason Broch Joins the Highland Market…

The Highland Marketing advisory board has welcomed a new member - Dr Jason Broch, a GP and director with a strong track record in the NHS and IT-enabled transformation. Dr Broch...

DMEA 2025 Ends with Record Attendance an…

8 - 10 April 2025, Berlin, Germany. DMEA 2025 came to a successful close with record attendance and an impressive program. 20,500 participants attended Europe's leading digital health event over the...

Multi-Resistance in Bacteria Predicted b…

An AI model trained on large amounts of genetic data can predict whether bacteria will become antibiotic-resistant. The new study shows that antibiotic resistance is more easily transmitted between genetically...

AI-Driven Smart Devices to Transform Hea…

AI-powered, internet-connected medical devices have the potential to revolutionise healthcare by enabling early disease detection, real-time patient monitoring, and personalised treatments, a new study suggests. They are already saving lives...