AI for Real-Rime, Patient-Focused Insight

A picture may be worth a thousand words, but still... they both have a lot of work to do to catch up to BiomedGPT.

Covered recently in the prestigious journal Nature Medicine, BiomedGPT is a new a new type of artificial intelligence (AI) designed to support a wide range of medical and scientific tasks. This new study, conducted in collaboration with multiple institutions, is described in the article as "the first open-source and lightweight vision–language foundation model, designed as a generalist capable of performing various biomedical tasks."

"This work combines two types of AI into a decision support tool for medical providers," explains Lichao Sun, an assistant professor of computer science and engineering at Lehigh University and a lead author of the study. "One side of the system is trained to understand biomedical images, and one is trained to understand and assess biomedical text. The combination of these allows the model to tackle a wide range of biomedical challenges, using insight gleaned from databases of biomedical imagery and from the analysis and synthesis of scientific and medical research reports."

The key innovation described in the August 7 Nature Medicine article, “A generalist vision–language foundation model for diverse biomedical tasks,” is that this AI model doesn’t need to be specialized for each task. Typically, AI systems are trained for specific jobs, like recognizing tumors in X-rays or summarizing medical papers. However, this new model can handle many different tasks using the same underlying technology. This versatility makes it a "generalist" model - and a powerful new tool in the hands of medical providers.

"BiomedGPT is based on foundation models, a recent development in AI," says Sun. "Foundation models are large, pre-trained AI systems that can be adapted to various tasks with minimal additional training. The generalist model described in the article has been trained on vast amounts of biomedical data, including images and text, enabling it to perform well across different applications."

"By evaluating 25 datasets across 9 biomedical tasks and different modalities," says Kai Zhang, a Lehigh PhD student advised by Sun who serves as first author of the Nature article, "BiomedGPT achieved 16 state-of-the-art results. A human evaluation of BiomedGPT on three radiology tasks showcased the model’s robust predictive abilities."

Zhang says that he is proud that the open-source codebase is available for other researchers to use as a springboard to drive further development and adoption.

The team reports that the technology behind BiomedGPT may one day help doctors by interpreting complex medical images, assist researchers by analyzing scientific literature, or even aid in drug discovery by predicting how molecules behave.

"The potential impact of such technology is significant," Zhang says, "as it could streamline many aspects of healthcare and research, making them faster and more accurate. Our method demonstrates that effective training with diverse data can lead to more practical biomedical AI for improving diagnosis and workflow efficiency."

A crucial step in the process was validation of the model's effectiveness and applicability in real-world healthcare settings.

"Clinical testing involves applying the AI model to real patient data to assess its accuracy, reliability, and safety," Sun says. "This testing ensures that the model performs well across different scenarios. The outcomes of these tests helped refine the model, demonstrating its potential to improve clinical decision-making and patient care."

Massachusetts General Hospital (MGH), a founding member of the Mass General Brigham healthcare system and teaching affiliate of Harvard Medical School, played a crucial role in the development and validation of the BiomedGPT model. The institution's involvement primarily focused on providing clinical expertise and facilitating the evaluation of the model's effectiveness in real-world healthcare settings. For instance, the model was tested with radiologists at MGH, where it demonstrated superior performance in tasks like visual question answering and radiology report generation. This collaboration helped ensure that the model was both accurate and practical for clinical use.

Other contributors to BiomedGPT include researchers from University of Georgia, Samsung Research America, University of Pennsylvania, Stanford University, University of Central Florida, UC-Santa Cruz, University of Texas-Health, Children’s Hospital of Philadelphia, and the Mayo Clinic.

"This research is highly interdisciplinary and collaborative," says Sun. "The research involves expertise from multiple fields, including computer science, medicine, radiology, and biomedical engineering. Each author contributes specialized knowledge necessary to develop, test, and validate the model across various biomedical tasks. Large-scale projects like this often require access to diverse datasets and computational resources, along with access to skills in algorithm development, model training, evaluation, and application to real-world scenarios, as well as clinical testing and validation.

"This was a true team effort," he says. "Creating something that can truly help the medical community improve patient outcomes across a wide range of issues is a very complex challenge. With such complexity, collaboration is key to creating impact through the application of science and engineering."

Zhang K, Zhou R, Adhikarla E, Yan Z, Liu Y, Yu J, Liu Z, Chen X, Davison BD, Ren H, Huang J, Chen C, Zhou Y, Fu S, Liu W, Liu T, Li X, Chen Y, He L, Zou J, Li Q, Liu H, Sun L.
A generalist vision-language foundation model for diverse biomedical tasks.
Nat Med. 2024 Aug 7. doi: 10.1038/s41591-024-03185-2

Most Popular Now

In 10 Seconds, an AI Model Detects Cance…

Researchers have developed an AI powered model that - in 10 seconds - can determine during surgery if any part of a cancerous brain tumor that could be removed remains...

Does AI Improve Doctors' Diagnoses?

With hospitals already deploying artificial intelligence to improve patient care, a new study has found that using Chat GPT Plus does not significantly improve the accuracy of doctors' diagnoses when...

AI Analysis of PET/CT Images can Predict…

Dr. Watanabe and his teams from Niigata University have revealed that PET/CT image analysis using artificial intelligence (AI) can predict the occurrence of interstitial lung disease, known as a serious...

500 Patient Images per Second Shared thr…

The image exchange portal, widely known in the NHS as the IEP, is now being used to share as many as 500 images each second - including x-rays, CT, MRI...

Jane Stephenson Joins SPARK TSL as Chief…

Jane Stephenson has joined SPARK TSL as chief executive as the company looks to establish the benefits of SPARK Fusion with trusts looking for deployable solutions to improve productivity. Stephenson joins...

NIH-Developed AI Algorithm Successfully …

Researchers from the National Institutes of Health (NIH) have developed an artificial intelligence (AI) algorithm to help speed up the process of matching potential volunteers to relevant clinical research trials...

Heart Attacks could be Ruled Out Early w…

As many as 60% of people presenting to emergency departments around the world with heart attack symptoms could be safely sent home, many at earlier stages, with the support of...

Northern Ireland's Laboratory Servi…

The transformation of pathology services across Northern Ireland has achieved another milestone, with the completion of phase three of the CoreLIMS programme to deploy Clinisys WinPath to all five health...

MEDICA 2024 and COMPAMED 2024: Medical T…

11 - 14 November 2024, Düsseldorf, Germany. "Meet Health. Future. People." is MEDICA's campaign motto for the future in the new trade fair year 2025. The aptness of the motto...

Is Your Marketing Effective for an NHS C…

How can you make sure you get the right message across to an NHS chief information officer, or chief nursing information officer? Replay this webinar with Professor Natasha Phillips, former...

We could Soon Use AI to Detect Brain Tum…

A new paper in Biology Methods and Protocols, published by Oxford University Press, shows that scientists can train artificial intelligence (AI) models to distinguish brain tumors from healthy tissue. AI...

Telehealth Significantly Boosts Treatmen…

New research reveals a dramatic improvement in diagnosing and curing people living with hepatitis C in rural communities using both telemedicine and support from peers with lived experience in drug...