New Research Shows Promise and Limitations of Physicians Working with GPT-4 for Decision Making

Published in JAMA Network Open, a collaborative team of researchers from the University of Minnesota Medical School, Stanford University, Beth Israel Deaconess Medical Center and the University of Virginia studied how well doctors used GPT-4 - an artificial intelligence (AI) large language model system - for diagnosing patients.

The study was conducted with 50 U.S.-licensed physicians in family medicine, internal medicine and emergency medicine. The research team found that the availability of GPT-4 to physicians as a diagnostic aid did not significantly improve clinical reasoning compared to conventional resources. Other key findings include:

  • GPT-4 alone demonstrated significantly better scores in diagnostic performance, surpassing the performance of clinicians using conventional diagnostic online resources and clinicians assisted by GPT-4.
  • There was no significant enhancement in diagnostic performance with the addition of GPT-4 when assessing clinicians using GPT-4 against clinicians using conventional diagnostic resources.

"The field of AI is expanding rapidly and impacting our lives inside and outside of medicine. It is important that we study these tools and understand how we best use them to improve the care we provide as well as the experience of providing it," said Andrew Olson, MD, a professor at the U of M Medical School and hospitalist with M Health Fairview. "This study suggests that there are opportunities for further improvement in physician-AI collaboration in clinical practice."

These results underline the complexity of integrating AI into clinical practice. While GPT-4 alone showed promising results, the integration of GPT-4 as a diagnostic aid alongside clinicians did not significantly outperform the use of conventional diagnostic resources. This suggests a nuanced potential for AI in healthcare, emphasizing the importance of further exploration into how AI can best support clinical practice. Further, more studies are needed to understand how clinicians should be trained to use these tools.

The four collaborating institutions have launched a bi-coastal AI evaluation network - known as ARiSE - to further evaluate GenAI outputs in healthcare.

Funding for this research was provided by the Gordon and Betty Moore Foundation.

Goh E, Gallo R, Hom J, Strong E, Weng Y, Kerman H, Cool JA, Kanjee Z, Parsons AS, Ahuja N, Horvitz E, Yang D, Milstein A, Olson APJ, Rodman A, Chen JH.
Large Language Model Influence on Diagnostic Reasoning: A Randomized Clinical Trial.
JAMA Netw Open. 2024 Oct 1;7(10):e2440969. doi: 10.1001/jamanetworkopen.2024.40969

Most Popular Now

In 10 Seconds, an AI Model Detects Cance…

Researchers have developed an AI powered model that - in 10 seconds - can determine during surgery if any part of a cancerous brain tumor that could be removed remains...

Does AI Improve Doctors' Diagnoses?

With hospitals already deploying artificial intelligence to improve patient care, a new study has found that using Chat GPT Plus does not significantly improve the accuracy of doctors' diagnoses when...

AI Analysis of PET/CT Images can Predict…

Dr. Watanabe and his teams from Niigata University have revealed that PET/CT image analysis using artificial intelligence (AI) can predict the occurrence of interstitial lung disease, known as a serious...

500 Patient Images per Second Shared thr…

The image exchange portal, widely known in the NHS as the IEP, is now being used to share as many as 500 images each second - including x-rays, CT, MRI...

Jane Stephenson Joins SPARK TSL as Chief…

Jane Stephenson has joined SPARK TSL as chief executive as the company looks to establish the benefits of SPARK Fusion with trusts looking for deployable solutions to improve productivity. Stephenson joins...

NIH-Developed AI Algorithm Successfully …

Researchers from the National Institutes of Health (NIH) have developed an artificial intelligence (AI) algorithm to help speed up the process of matching potential volunteers to relevant clinical research trials...

Heart Attacks could be Ruled Out Early w…

As many as 60% of people presenting to emergency departments around the world with heart attack symptoms could be safely sent home, many at earlier stages, with the support of...

Northern Ireland's Laboratory Servi…

The transformation of pathology services across Northern Ireland has achieved another milestone, with the completion of phase three of the CoreLIMS programme to deploy Clinisys WinPath to all five health...

MEDICA 2024 and COMPAMED 2024: Medical T…

11 - 14 November 2024, Düsseldorf, Germany. "Meet Health. Future. People." is MEDICA's campaign motto for the future in the new trade fair year 2025. The aptness of the motto...

Is Your Marketing Effective for an NHS C…

How can you make sure you get the right message across to an NHS chief information officer, or chief nursing information officer? Replay this webinar with Professor Natasha Phillips, former...

We could Soon Use AI to Detect Brain Tum…

A new paper in Biology Methods and Protocols, published by Oxford University Press, shows that scientists can train artificial intelligence (AI) models to distinguish brain tumors from healthy tissue. AI...

Telehealth Significantly Boosts Treatmen…

New research reveals a dramatic improvement in diagnosing and curing people living with hepatitis C in rural communities using both telemedicine and support from peers with lived experience in drug...