New Research Shows Promise and Limitations of Physicians Working with GPT-4 for Decision Making

Published in JAMA Network Open, a collaborative team of researchers from the University of Minnesota Medical School, Stanford University, Beth Israel Deaconess Medical Center and the University of Virginia studied how well doctors used GPT-4 - an artificial intelligence (AI) large language model system - for diagnosing patients.

The study was conducted with 50 U.S.-licensed physicians in family medicine, internal medicine and emergency medicine. The research team found that the availability of GPT-4 to physicians as a diagnostic aid did not significantly improve clinical reasoning compared to conventional resources. Other key findings include:

  • GPT-4 alone demonstrated significantly better scores in diagnostic performance, surpassing the performance of clinicians using conventional diagnostic online resources and clinicians assisted by GPT-4.
  • There was no significant enhancement in diagnostic performance with the addition of GPT-4 when assessing clinicians using GPT-4 against clinicians using conventional diagnostic resources.

"The field of AI is expanding rapidly and impacting our lives inside and outside of medicine. It is important that we study these tools and understand how we best use them to improve the care we provide as well as the experience of providing it," said Andrew Olson, MD, a professor at the U of M Medical School and hospitalist with M Health Fairview. "This study suggests that there are opportunities for further improvement in physician-AI collaboration in clinical practice."

These results underline the complexity of integrating AI into clinical practice. While GPT-4 alone showed promising results, the integration of GPT-4 as a diagnostic aid alongside clinicians did not significantly outperform the use of conventional diagnostic resources. This suggests a nuanced potential for AI in healthcare, emphasizing the importance of further exploration into how AI can best support clinical practice. Further, more studies are needed to understand how clinicians should be trained to use these tools.

The four collaborating institutions have launched a bi-coastal AI evaluation network - known as ARiSE - to further evaluate GenAI outputs in healthcare.

Funding for this research was provided by the Gordon and Betty Moore Foundation.

Goh E, Gallo R, Hom J, Strong E, Weng Y, Kerman H, Cool JA, Kanjee Z, Parsons AS, Ahuja N, Horvitz E, Yang D, Milstein A, Olson APJ, Rodman A, Chen JH.
Large Language Model Influence on Diagnostic Reasoning: A Randomized Clinical Trial.
JAMA Netw Open. 2024 Oct 1;7(10):e2440969. doi: 10.1001/jamanetworkopen.2024.40969

Most Popular Now

AI Tool Offers Deep Insight into the Imm…

Researchers explore the human immune system by looking at the active components, namely the various genes and cells involved. But there is a broad range of these, and observations necessarily...

Do Fitness Apps do More Harm than Good?

A study published in the British Journal of Health Psychology reveals the negative behavioral and psychological consequences of commercial fitness apps reported by users on social media. These impacts may...

AI Tool Beats Humans at Detecting Parasi…

Scientists at ARUP Laboratories have developed an artificial intelligence (AI) tool that detects intestinal parasites in stool samples more quickly and accurately than traditional methods, potentially transforming how labs diagnose...

Making Cancer Vaccines More Personal

In a new study, University of Arizona researchers created a model for cutaneous squamous cell carcinoma, a type of skin cancer, and identified two mutated tumor proteins, or neoantigens, that...

AI, Health, and Health Care Today and To…

Artificial intelligence (AI) carries promise and uncertainty for clinicians, patients, and health systems. This JAMA Summit Report presents expert perspectives on the opportunities, risks, and challenges of AI in health...

AI can Better Predict Future Risk for He…

A landmark study led by University' experts has shown that artificial intelligence can better predict how doctors should treat patients following a heart attack. The study, conducted by an international...

A New AI Model Improves the Prediction o…

Breast cancer is the most commonly diagnosed form of cancer in the world among women, with more than 2.3 million cases a year, and continues to be one of the...

AI System Finds Crucial Clues for Diagno…

Doctors often must make critical decisions in minutes, relying on incomplete information. While electronic health records contain vast amounts of patient data, much of it remains difficult to interpret quickly...

Improved Cough-Detection Tech can Help w…

Researchers have improved the ability of wearable health devices to accurately detect when a patient is coughing, making it easier to monitor chronic health conditions and predict health risks such...

Multimodal AI Poised to Revolutionize Ca…

Although artificial intelligence (AI) has already shown promise in cardiovascular medicine, most existing tools analyze only one type of data - such as electrocardiograms or cardiac images - limiting their...

New AI Tool Makes Medical Imaging Proces…

When doctors analyze a medical scan of an organ or area in the body, each part of the image has to be assigned an anatomical label. If the brain is...