AI could Transform How Hospitals Produce Quality Reports

A pilot study led by researchers at University of California San Diego School of Medicine found that advanced artificial intelligence (AI) could potentially lead to easier, faster and more efficient hospital quality reporting while retaining high accuracy, which could lead to enhanced health care delivery.

The study results, published in the October 21, 2024 online edition of the New England Journal of Medicine (NEJM) AI, found an AI system using large language models (LLMs) can accurately process hospital quality measures, achieving 90% agreement with manual reporting, which could lead to more efficient and reliable approaches to health care reporting.

Researchers of the study, in partnership with the Joan and Irwin Jacobs Center for Health Innovation at UC San Diego Health (JCHI), found that LLMs can perform accurate abstractions for complex quality measures, particularly in the challenging context of the Centers for Medicare & Medicaid Services (CMS) SEP-1 measure for severe sepsis and septic shock.

"The integration of LLMs into hospital workflows holds the promise of transforming health care delivery by making the process more real-time, which can enhance personalized care and improve patient access to quality data," said Aaron Boussina, postdoctoral scholar and lead author of the study at UC San Diego School of Medicine. "As we advance this research, we envision a future where quality reporting is not just efficient but also improves the overall patient experience."

Traditionally, the abstraction process for SEP-1 involves a meticulous 63-step evaluation of extensive patient charts, requiring weeks of effort from multiple reviewers. This study found that LLMs can dramatically reduce the time and resources needed for this process by accurately scanning patient charts and generating crucial contextual insights in seconds.

By addressing the complex demands of quality measurement, the researchers believe the findings pave the way for a more efficient and responsive health care system.

"We remain diligent on our path to leverage technologies to help reduce the administrative burden of health care and, in turn, enable our quality improvement specialists to spend more time supporting the exceptional care our medical teams provide," said Chad VanDenBerg, study co-author and chief quality and patient safety officer at UC San Diego Health.

Other key findings of the study found that LLMs can improve efficiency by correcting errors and speeding up processing time; lowering administrative costs by automating tasks; enabling near-real-time quality assessments; and are scalable across various health care settings.

Future steps include the research team validating these findings and implementing them to enhance reliable data and reporting methods.

Aaron Boussina, Rishivardhan Krishnamoorthy, Kimberly Quintero, Shreyansh Joshi, Gabriel Wardi, Hayden Pour, Nicholas Hilbert, Atul Malhotra, Michael Hogarth, Amy M Sitapati, Chad VanDenBerg, Karandeep Singh, Christopher A Longhurst, Shamim Nemati.
Large Language Models for More Efficient Reporting of Hospital Quality Measures.
NEJM AI, 2024. doi: https://doi.org/10.1056/AIcs2400420

Most Popular Now

In 10 Seconds, an AI Model Detects Cance…

Researchers have developed an AI powered model that - in 10 seconds - can determine during surgery if any part of a cancerous brain tumor that could be removed remains...

Does AI Improve Doctors' Diagnoses?

With hospitals already deploying artificial intelligence to improve patient care, a new study has found that using Chat GPT Plus does not significantly improve the accuracy of doctors' diagnoses when...

AI Analysis of PET/CT Images can Predict…

Dr. Watanabe and his teams from Niigata University have revealed that PET/CT image analysis using artificial intelligence (AI) can predict the occurrence of interstitial lung disease, known as a serious...

New Medical AI Tool Identifies more Case…

Investigators at Mass General Brigham have developed an AI-based tool to sift through electronic health records to help clinicians identify cases of long COVID, an often mysterious condition that can...

500 Patient Images per Second Shared thr…

The image exchange portal, widely known in the NHS as the IEP, is now being used to share as many as 500 images each second - including x-rays, CT, MRI...

Jane Stephenson Joins SPARK TSL as Chief…

Jane Stephenson has joined SPARK TSL as chief executive as the company looks to establish the benefits of SPARK Fusion with trusts looking for deployable solutions to improve productivity. Stephenson joins...

NIH-Developed AI Algorithm Successfully …

Researchers from the National Institutes of Health (NIH) have developed an artificial intelligence (AI) algorithm to help speed up the process of matching potential volunteers to relevant clinical research trials...

Heart Attacks could be Ruled Out Early w…

As many as 60% of people presenting to emergency departments around the world with heart attack symptoms could be safely sent home, many at earlier stages, with the support of...

MEDICA 2024 and COMPAMED 2024: Medical T…

11 - 14 November 2024, Düsseldorf, Germany. "Meet Health. Future. People." is MEDICA's campaign motto for the future in the new trade fair year 2025. The aptness of the motto...

Northern Ireland's Laboratory Servi…

The transformation of pathology services across Northern Ireland has achieved another milestone, with the completion of phase three of the CoreLIMS programme to deploy Clinisys WinPath to all five health...

Is Your Marketing Effective for an NHS C…

How can you make sure you get the right message across to an NHS chief information officer, or chief nursing information officer? Replay this webinar with Professor Natasha Phillips, former...

We could Soon Use AI to Detect Brain Tum…

A new paper in Biology Methods and Protocols, published by Oxford University Press, shows that scientists can train artificial intelligence (AI) models to distinguish brain tumors from healthy tissue. AI...