AI could Transform How Hospitals Produce Quality Reports

A pilot study led by researchers at University of California San Diego School of Medicine found that advanced artificial intelligence (AI) could potentially lead to easier, faster and more efficient hospital quality reporting while retaining high accuracy, which could lead to enhanced health care delivery.

The study results, published in the October 21, 2024 online edition of the New England Journal of Medicine (NEJM) AI, found an AI system using large language models (LLMs) can accurately process hospital quality measures, achieving 90% agreement with manual reporting, which could lead to more efficient and reliable approaches to health care reporting.

Researchers of the study, in partnership with the Joan and Irwin Jacobs Center for Health Innovation at UC San Diego Health (JCHI), found that LLMs can perform accurate abstractions for complex quality measures, particularly in the challenging context of the Centers for Medicare & Medicaid Services (CMS) SEP-1 measure for severe sepsis and septic shock.

"The integration of LLMs into hospital workflows holds the promise of transforming health care delivery by making the process more real-time, which can enhance personalized care and improve patient access to quality data," said Aaron Boussina, postdoctoral scholar and lead author of the study at UC San Diego School of Medicine. "As we advance this research, we envision a future where quality reporting is not just efficient but also improves the overall patient experience."

Traditionally, the abstraction process for SEP-1 involves a meticulous 63-step evaluation of extensive patient charts, requiring weeks of effort from multiple reviewers. This study found that LLMs can dramatically reduce the time and resources needed for this process by accurately scanning patient charts and generating crucial contextual insights in seconds.

By addressing the complex demands of quality measurement, the researchers believe the findings pave the way for a more efficient and responsive health care system.

"We remain diligent on our path to leverage technologies to help reduce the administrative burden of health care and, in turn, enable our quality improvement specialists to spend more time supporting the exceptional care our medical teams provide," said Chad VanDenBerg, study co-author and chief quality and patient safety officer at UC San Diego Health.

Other key findings of the study found that LLMs can improve efficiency by correcting errors and speeding up processing time; lowering administrative costs by automating tasks; enabling near-real-time quality assessments; and are scalable across various health care settings.

Future steps include the research team validating these findings and implementing them to enhance reliable data and reporting methods.

Aaron Boussina, Rishivardhan Krishnamoorthy, Kimberly Quintero, Shreyansh Joshi, Gabriel Wardi, Hayden Pour, Nicholas Hilbert, Atul Malhotra, Michael Hogarth, Amy M Sitapati, Chad VanDenBerg, Karandeep Singh, Christopher A Longhurst, Shamim Nemati.
Large Language Models for More Efficient Reporting of Hospital Quality Measures.
NEJM AI, 2024. doi: https://doi.org/10.1056/AIcs2400420

Most Popular Now

Open Medical Works with Moray's Dig…

Open Medical is working with the Digital Health & Care Innovation Centre’s Rural Centre of Excellence on a referral management plan, as part of a research and development scheme to...

Generative AI on Track to Shape the Futu…

Using advanced artificial intelligence (AI), researchers have developed a novel method to make drug development faster and more efficient. In a new paper, Xia Ning, lead author of the study and...

AI could Help Improve Early Detection of…

A new study led by investigators at the UCLA Health Jonsson Comprehensive Cancer Center suggests that artificial intelligence (AI) could help detect interval breast cancers - those that develop between...

Reorganisation, Consolidation, and Cuts:…

NHS England has been downsized and abolished. Integrated care boards have been told to change function, consolidate, and deliver savings. Trusts are planning big cuts. The Highland Marketing advisory board...

AI-Human Task-Sharing could Cut Mammogra…

The most effective way to harness the power of artificial intelligence (AI) when screening for breast cancer may be through collaboration with human radiologists - not by wholesale replacing them...

Siemens Healthineers infection Control S…

Klinikum Region Hannover (KRH) has commissioned Siemens Healthineers to install infection control system (ICS) at the Klinikum Siloah hospital. The ICS aims to effectively tackle nosocomial infections and increase patient...

AI Tool Uses Face Photos to Estimate Bio…

Eyes may be the window to the soul, but a person's biological age could be reflected in their facial characteristics. Investigators from Mass General Brigham developed a deep learning algorithm...

Philips Future Health Index 2025 Report …

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, today unveiled its 2025 Future Health Index U.S. report, "Building trust in healthcare AI," spotlighting the state of...

AI-Powered Precision: Unlocking the Futu…

A team of researchers from the Department of Diagnostic and Therapeutic Ultrasonography at the Tianjin Medical University Cancer Institute & Hospital, have published a review in Cancer Biology & Medicine...

AI Model Improves Delirium Prediction, L…

An artificial intelligence (AI) model improved outcomes in hospitalized patients by quadrupling the rate of detection and treatment of delirium. The model identifies patients at high risk for delirium and...

Building Trust in Artificial Intelligenc…

A new review, published in the peer-reviewed journal AI in Precision Oncology, explores the multifaceted reasons behind the skepticism surrounding artificial intelligence (AI) technologies in healthcare and advocates for approaches...

SALSA: A New AI Tool for the Automated a…

Investigators of the Vall d'Hebron Institute of Oncology's (VHIO) Radiomics Group, led by Raquel Perez-Lopez, have developed SALSA (System for Automatic Liver tumor Segmentation And detection), a fully automated deep...