AI does Not Necessarily Lead to more Efficiency in Clinical Practice

The use of artificial intelligence (AI) in hospitals and patient care is steadily increasing. Especially in specialist areas with a high proportion of imaging, such as radiology, AI has long been part of everyday clinical practice. However, the question of the extent to which AI actually influences workflows in a clinical setting remains largely unanswered. Researchers at the University Hospital Bonn (UKB) and the University of Bonn have therefore conducted a comprehensive analysis of existing studies on the effect of AI. They were able to show that AI does not automatically lead to an acceleration of work processes. Their results have now been published in the journal npj Digital Medicine.

Although AI is often seen as a solution for handling routine tasks such as monitoring patients, documenting care tasks and supporting clinical decisions, the actual effects on work processes are unclear. Particularly in data-intensive specialties such as genomics, pathology and radiology, where AI is already being used to recognise patterns in large amounts of data and prioritise cases, there is a lack of reliable data on efficiency gains.

"We wanted to find out to what extent AI solutions actually improve efficiency in medical imaging," explains Katharina Wenderott, lead author of the study and a doctoral student at the University of Bonn at the UKB's Institute for Patient Safety (IfPS). "The widespread assumption that AI automatically speeds up work processes often falls short."

The research team conducted a systematic review of 48 studies that examined the use of AI tools in clinical settings, particularly in radiology and gastroenterology. Of the 33 studies that looked at the processing time of work processes, 67 per cent reported a reduction in working hours, but the meta-analyses did not show any significant efficiency gains. "Some studies showed statistically significant differences, but these were insufficient to draw general conclusions," says Wenderott.

In addition, the team analysed how well AI is integrated into existing workflows. It was found that the success of implementation depends heavily on the specific conditions and processes on site. However, the heterogeneity of the study designs and the technologies used made it difficult to conduct a uniform evaluation.

"Our results make it clear that the use of AI in everyday clinical practice must be considered in a differentiated way," emphasises Prof. Matthias Weigl, Director of the IfPS at the UKB, who also conducts research at the University of Bonn. "Local conditions and individual work processes have a major influence on the success of implementation."

The study provides important initial insights into how AI technologies can influence clinical work processes. "A key finding is the need for clearly structured reporting in future studies in order to better evaluate the scientific and practical benefits of these technologies," summarises Prof. Weigl.

Wenderott K, Krups J, Zaruchas F, Weigl M.
Effects of artificial intelligence implementation on efficiency in medical imaging-a systematic literature review and meta-analysis.
NPJ Digit Med. 2024 Sep 30;7(1):265. doi: 10.1038/s41746-024-01248-9

Most Popular Now

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

Are You Eligible for a Clinical Trial? C…

A new study in the academic journal Machine Learning: Health discovers that ChatGPT can accelerate patient screening for clinical trials, showing promise in reducing delays and improving trial success rates. Researchers...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...

Global Study Reveals How Patients View M…

How physicians feel about artificial intelligence (AI) in medicine has been studied many times. But what do patients think? A team led by researchers at the Technical University of Munich...