AI does Not Necessarily Lead to more Efficiency in Clinical Practice

The use of artificial intelligence (AI) in hospitals and patient care is steadily increasing. Especially in specialist areas with a high proportion of imaging, such as radiology, AI has long been part of everyday clinical practice. However, the question of the extent to which AI actually influences workflows in a clinical setting remains largely unanswered. Researchers at the University Hospital Bonn (UKB) and the University of Bonn have therefore conducted a comprehensive analysis of existing studies on the effect of AI. They were able to show that AI does not automatically lead to an acceleration of work processes. Their results have now been published in the journal npj Digital Medicine.

Although AI is often seen as a solution for handling routine tasks such as monitoring patients, documenting care tasks and supporting clinical decisions, the actual effects on work processes are unclear. Particularly in data-intensive specialties such as genomics, pathology and radiology, where AI is already being used to recognise patterns in large amounts of data and prioritise cases, there is a lack of reliable data on efficiency gains.

"We wanted to find out to what extent AI solutions actually improve efficiency in medical imaging," explains Katharina Wenderott, lead author of the study and a doctoral student at the University of Bonn at the UKB's Institute for Patient Safety (IfPS). "The widespread assumption that AI automatically speeds up work processes often falls short."

The research team conducted a systematic review of 48 studies that examined the use of AI tools in clinical settings, particularly in radiology and gastroenterology. Of the 33 studies that looked at the processing time of work processes, 67 per cent reported a reduction in working hours, but the meta-analyses did not show any significant efficiency gains. "Some studies showed statistically significant differences, but these were insufficient to draw general conclusions," says Wenderott.

In addition, the team analysed how well AI is integrated into existing workflows. It was found that the success of implementation depends heavily on the specific conditions and processes on site. However, the heterogeneity of the study designs and the technologies used made it difficult to conduct a uniform evaluation.

"Our results make it clear that the use of AI in everyday clinical practice must be considered in a differentiated way," emphasises Prof. Matthias Weigl, Director of the IfPS at the UKB, who also conducts research at the University of Bonn. "Local conditions and individual work processes have a major influence on the success of implementation."

The study provides important initial insights into how AI technologies can influence clinical work processes. "A key finding is the need for clearly structured reporting in future studies in order to better evaluate the scientific and practical benefits of these technologies," summarises Prof. Weigl.

Wenderott K, Krups J, Zaruchas F, Weigl M.
Effects of artificial intelligence implementation on efficiency in medical imaging-a systematic literature review and meta-analysis.
NPJ Digit Med. 2024 Sep 30;7(1):265. doi: 10.1038/s41746-024-01248-9

Most Popular Now

Almost All Leading AI Chatbots Show Sign…

Almost all leading large language models or "chatbots" show signs of mild cognitive impairment in tests widely used to spot early signs of dementia, finds a study in the Christmas...

New Study Reveals Why Organisations are …

The slow adoption of blockchain technology is partly driven by overhyped promises that often obscure the complex technological, organisational, and environmental challenges, according to research from the University of Surrey...

Emotional Cognition Analysis Enables Nea…

A joint research team from the University of Canberra and Kuwait College of Science and Technology has achieved groundbreaking detection of Parkinson's disease with near-perfect accuracy, simply by analyzing brain...

New Recommendations to Increase Transpar…

Patients will be better able to benefit from innovations in medical artificial intelligence (AI) if a new set of internationally-agreed recommendations are followed. A new set of recommendations published in The...

Digital Health Unveils Draft Programme f…

18 - 19 March 2025, Birmingham, UK. Digital Health has unveiled the draft programme for its Rewired 2025 event which will take place at the NEC in Birmingham in March next...

AI System Helps Doctors Identify Patient…

A new study from Vanderbilt University Medical Center shows that clinical alerts driven by artificial intelligence (AI) can help doctors identify patients at risk for suicide, potentially improving prevention efforts...

Smartphone App can Help Reduce Opioid Us…

Patients with opioid use disorder can reduce their days of opioid use and stay in treatment longer when using a smartphone app as supportive therapy in combination with medication, a...

AI's New Move: Transforming Skin Ca…

Pioneering research has unveiled a powerful new tool in the fight against skin cancer, combining cutting-edge artificial intelligence (AI) with deep learning to enhance the precision of skin lesion classification...

Leveraging AI to Assist Clinicians with …

Physical examinations are important diagnostic tools that can reveal critical insights into a patient's health, but complex conditions may be overlooked if a clinician lacks specialized training in that area...

AI can Improve Ovarian Cancer Diagnoses

A new international study led by researchers at Karolinska Institutet in Sweden shows that AI-based models can outperform human experts at identifying ovarian cancer in ultrasound images. The study is...

Major EU Project to Investigate Societal…

A new €3 million EU research project led by University College Dublin (UCD) Centre for Digital Policy will explore the benefits and risks of Artificial Intelligence (AI) from a societal...

Predicting the Progression of Autoimmune…

Autoimmune diseases, where the immune system mistakenly attacks the body's own healthy cells and tissues, often have a preclinical stage before diagnosis that’s characterized by mild symptoms or certain antibodies...