Revolutionizing Cardiovascular Risk Assessment with AI

A recent position paper in the Asia-Pacific Journal of Ophthalmology explores the transformative potential of artificial intelligence (AI) in ophthalmology. Led by Lama Al-Aswad, Professor of Ophthalmology and Irene Heinz Given and John La Porte Given Research Professor of Ophthalmology II, of the Scheie Eye Institute, the work represents a collaboration among researchers from Penn Engineering, Penn Medicine, the University of Michigan Kellogg Eye Center, St. John Eye Hospital in Jerusalem, and Gyeongsang National University College of Medicine in Korea.

With fundus photography enabling the visualization of retina at the back of the eye, the potential of AI in providing systemic disease biomarkers is becoming a reality. When fundus images are of sufficient quantity and quality, it becomes possible to train AI systems to detect elevated HbA1c levels - an important marker for high blood sugar that is traditionally obtained with blood draws, which indicates a heightened risk of diabetes and cardiovascular disease. This process leverages the emerging field of oculomics, which studies ophthalmic biomarkers to gain insights into systemic health.

In their manuscript, titled "Development of Oculomics Artificial Intelligence for Cardiovascular Risk Factors: A Case Study in Fundus Oculomics for HbA1c Assessment and Clinically Relevant Considerations for Clinicians," this multi-institutional team explores the potential of oculomics and highlights pertinent topics for clinicians to consider as we move into an era where artificial intelligence has the potential to enhance systemic health through eye care.

Their discussion is supported by preliminary research results from a pilot study that trained AI models to predict HbA1c levels based on fundus images. This study evaluated various factors - such as AI model size and architecture, the presence of diabetes, and patient demographics (age and sex) - and their impact on AI performance.

One of the study observations was that biased training samples for an oculomics model, such as a pool of predominantly older patients, can degrade model performance. The results of the case study highlight the importance of developing trustworthy AI models for assessing cardiovascular risk factors while addressing the challenges and problems that must be overcome prior to clinical adoption, as well as advancing reliable oculomics technology.

"By leveraging AI to analyze retinal images for cardiovascular risk assessment," says Al-Aswad, "we aim to bridge a crucial gap in early disease detection. This method not only enhances our ability to identify at-risk individuals but also holds promise for transforming how we manage chronic conditions such as diabetes. By focusing on practical applications of this technology, we are advancing towards more personalized and preventative healthcare solutions."

"While these advancements hold promise, it is also of utmost importance for clinicians and researchers to develop and employ these techniques in a responsible manner, as this will benefit patient care the most in the end," adds Kuk Jin Jang, a postdoctoral researcher in the Penn Research in Embedded Computing and Integrated Systems Engineering (PRECISE) Center at the University of Pennsylvania.

"Our collaboration serves to further understand how we can responsibly leverage this revolutionary technology to benefit patients in the future. It is a testament to the collaborative advances formed when healthcare and engineering come together to work towards responsible AI for patient care," says Joshua Ong, a resident physician at the University of Michigan and PRECISE Center affiliate. "I am incredibly grateful for our multidisciplinary team for coming together to bring this paper and topic to the forefront."

"This collaboration reflects a deep commitment to advancing healthcare through innovative AI applications," adds PRECISE Center Director Insup Lee, Cecilia Fitler Moore Professor in Computer and Information Science at Penn Engineering. "By combining our expertise, we are paving the way for significant improvements in patient care and the overall management of long-term health challenges."

Ong J, Jang KJ, Baek SJ, Hu D, Lin V, Jang S, Thaler A, Sabbagh N, Saeed A, Kwon M, Kim JH, Lee S, Han YS, Zhao M, Sokolsky O, Lee I, Al-Aswad LA.
Development of oculomics artificial intelligence for cardiovascular risk factors: A case study in fundus oculomics for HbA1c assessment and clinically relevant considerations for clinicians.
Asia Pac J Ophthalmol (Phila). 2024 Jul-Aug;13(4):100095. doi: 10.1016/j.apjo.2024.100095

Most Popular Now

Philips Foundation 2024 Annual Report: E…

Marking its tenth anniversary, Philips Foundation released its 2024 Annual Report, highlighting a year in which the Philips Foundation helped provide access to quality healthcare for 46.5 million people around...

New AI Transforms Radiology with Speed, …

A first-of-its-kind generative AI system, developed in-house at Northwestern Medicine, is revolutionizing radiology - boosting productivity, identifying life-threatening conditions in milliseconds and offering a breakthrough solution to the global radiologist...

Scientists Argue for More FDA Oversight …

An agile, transparent, and ethics-driven oversight system is needed for the U.S. Food and Drug Administration (FDA) to balance innovation with patient safety when it comes to artificial intelligence-driven medical...

New Research Finds Specific Learning Str…

If data used to train artificial intelligence models for medical applications, such as hospitals across the Greater Toronto Area, differs from the real-world data, it could lead to patient harm...

Giving Doctors an AI-Powered Head Start …

Detection of melanoma and a range of other skin diseases will be faster and more accurate with a new artificial intelligence (AI) powered tool that analyses multiple imaging types simultaneously...

AI Agents for Oncology

Clinical decision-making in oncology is challenging and requires the analysis of various data types - from medical imaging and genetic information to patient records and treatment guidelines. To effectively support...

Patients say "Yes..ish" to the…

As artificial intelligence (AI) continues to be integrated in healthcare, a new multinational study involving Aarhus University sheds light on how dental patients really feel about its growing role in...

Brains vs. Bytes: Study Compares Diagnos…

A University of Maine study compared how well artificial intelligence (AI) models and human clinicians handled complex or sensitive medical cases. The study published in the Journal of Health Organization...

'AI Scientist' Suggests Combin…

An 'AI scientist', working in collaboration with human scientists, has found that combinations of cheap and safe drugs - used to treat conditions such as high cholesterol and alcohol dependence...

Start-ups in the Spotlight at MEDICA 202…

17 - 20 November 2025, Düsseldorf, Germany. MEDICA, the leading international trade fair and platform for healthcare innovations, will once again confirm its position as the world's number one hotspot for...