Can Google Street View Data Improve Public Health?

Big data and artificial intelligence are transforming how we think about health, from detecting diseases and spotting patterns to predicting outcomes and speeding up response times.

In a new study analyzing two million Google Street View images from New York City streets, a team of New York University researchers evaluated the utility of this digital data in informing public health decision-making. Their findings, published in the Proceedings of the National Academy of Sciences (PNAS), show how relying on street view images alone may lead to inaccuracies and misguided interventions, but combining it with other knowledge grows its potential.

"There's a lot of excitement around leveraging new data sources to gain a holistic view of health, including bringing in machine learning and data science methods to extract new insights," said Rumi Chunara, associate professor of biostatistics at NYU School of Global Public Health, associate professor of computer science at NYU Tandon School of Engineering, and the study’s senior author.

"Our study highlights the potential of digital data sources such as street view images in enhancing public health research, while also pointing out the limitations of data and the complex dynamics between the environment, individual behavior, and health outcomes," said Miao Zhang, a PhD student at NYU Tandon School of Engineering and the study’s first author.

A street-level view of health

In recent years, researchers have begun using street view images to connect an area’s environment and infrastructure with outcomes such as mental health, infectious diseases, or obesity - a task that would be challenging to measure by hand.

“We know that a city’s built environment can shape our health, whether it's the availability of sidewalks and greenspaces for walking, or groceries stores carrying healthy foods,” said Chunara. “Some studies show that the availability of sidewalks correlates with lower obesity rates - but is that the whole story?”

"Our motivation for this study was to dive deeper into these associations to see if there are potential factors driving them," said Zhang.

Chunara, Zhang, and their colleagues analyzed more than two million Google Street View images of every New York City street, using artificial intelligence to assess the availability of sidewalks and crosswalks in the images. They then compared this information with localized data on obesity, diabetes, and physical activity from the Centers for Disease Control and Prevention to see if the built environment predicted health outcomes.

The researchers found that neighborhoods with more crosswalks had lower rates of obesity and diabetes. However, no significant link was found between sidewalks and health outcomes, in contrast to earlier research.

"This may be because a lot of the sidewalks in New York City are in places that people don't use - along a highway, on a bridge, or in a tunnel - so sidewalk density may not reflect neighborhood walkability as accurately as crosswalks," said Zhang.

They also surfaced issues with the accuracy of the AI-generated labels for the street view images, cautioning that they may not match the "ground truth" and be a reliable measure on their own. When comparing existing data on New York City's sidewalk availability with the labeled street view images, they found that many were incorrectly labeled as having or not having sidewalks, which may have been due to cars or shade obscuring them in photos.

If you build it, will they come?

While crosswalks were linked to lower rates of obesity and diabetes, the researchers applied a public health lens to determine what could explain this association. Their analyses of the CDC data revealed that physical activity - not just crosswalks, as measured in street view images - accounted for the decrease in obesity and diabetes. In one test, they found that increasing physical activity could result in a four times larger decrease in obesity and 17 times greater decrease in diabetes than could be achieved through installing more crosswalks.

"We saw that physical activity delivers the benefits of crosswalks, so it’s important to take such mechanisms into account, especially when they act on different levels like the built environment versus individuals," said Zhang.

Based on their findings, the researchers conclude that public health decision-making shouldn’t rely on new data sources alone, but must also consider domain knowledge. When analyzing street view images, incorporating computer science knowledge - for instance, how image processing techniques can improve accuracy or how to correct for bias in algorithms - and public health knowledge - what drives the associations between built environment and health outcomes - are critical. Layering this expertise over big data can inform how programs are designed and implemented to improve public health.

In this case, building more sidewalks and crosswalks would be less effective at improving health outcomes than the same increase in physical activity, such as through local exercise classes for the community.

"While growing amounts of digital data can be useful in informing decision-making, our results show that simply using associations from new data sources may not lead to the most useful interventions or best allocation of resources," added Chunara. "A more nuanced approach using big data in conjunction with expertise is needed to make the best use of this new data."

Zhang M, Rahman S, Mhasawade V, Chunara R.
Utilizing big data without domain knowledge impacts public health decision-making.
Proc Natl Acad Sci U S A. 2024 Sep 24;121(39):e2402387121. doi: 10.1073/pnas.2402387121

Most Popular Now

Stepping Hill Hospital Announced as SPAR…

Stepping Hill Hospital, part of Stockport NHS Foundation Trust, has replaced its bedside units with state-of-the art devices running a full range of information, engagement, communications and productivity apps, to...

DMEA 2025: Digital Health Worldwide in B…

8 - 10 April 2025, Berlin, Germany. From the AI Act, to the potential of the European Health Data Space, to the power of patient data in Scandinavia - DMEA 2025...

Is AI in Medicine Playing Fair?

As artificial intelligence (AI) rapidly integrates into health care, a new study by researchers at the Icahn School of Medicine at Mount Sinai reveals that all generative AI models may...

New System for the Early Detection of Au…

A team from the Human-Tech Institute-Universitat Politècnica de València has developed a new system for the early detection of Autism Spectrum Disorder (ASD) using virtual reality and artificial intelligence. The...

Generative AI's Diagnostic Capabili…

The use of generative AI for diagnostics has attracted attention in the medical field and many research papers have been published on this topic. However, because the evaluation criteria were...

Diagnoses and Treatment Recommendations …

A new study led by Prof. Dan Zeltzer, a digital health expert from the Berglas School of Economics at Tel Aviv University, compared the quality of diagnostic and treatment recommendations...

AI Tool can Track Effectiveness of Multi…

A new artificial intelligence (AI) tool that can help interpret and assess how well treatments are working for patients with multiple sclerosis (MS) has been developed by UCL researchers. AI uses...

Surrey and Sussex Healthcare NHS Trust g…

Surrey and Sussex Healthcare NHS Trust has marked an important milestone in connecting busy radiologists across large parts of South East England, following the successful go live of Sectra's enterprise...

Dr Jason Broch Joins the Highland Market…

The Highland Marketing advisory board has welcomed a new member - Dr Jason Broch, a GP and director with a strong track record in the NHS and IT-enabled transformation. Dr Broch...

DMEA 2025 Ends with Record Attendance an…

8 - 10 April 2025, Berlin, Germany. DMEA 2025 came to a successful close with record attendance and an impressive program. 20,500 participants attended Europe's leading digital health event over the...

Multi-Resistance in Bacteria Predicted b…

An AI model trained on large amounts of genetic data can predict whether bacteria will become antibiotic-resistant. The new study shows that antibiotic resistance is more easily transmitted between genetically...

AI-Driven Smart Devices to Transform Hea…

AI-powered, internet-connected medical devices have the potential to revolutionise healthcare by enabling early disease detection, real-time patient monitoring, and personalised treatments, a new study suggests. They are already saving lives...