Scientists Use AI to Detect Chronic High Blood Pressure in People's Voice Recordings

Researchers at Klick Labs unveiled a cutting-edge, non-invasive technique that can predict chronic high blood pressure (hypertension) with a high degree of accuracy using just a person's voice. Just published in the peer-reviewed journal IEEE Access, the findings hold tremendous potential for advancing early detection of chronic high blood pressure and showcase yet another novel way to harness vocal biomarkers for better health outcomes.

The study's 245 participants were asked to record their voices up to six times daily for two weeks by speaking into a proprietary mobile app, developed by the Klick scientists, which detected high blood pressure with accuracies up to 84 percent for females and 77 percent for males. The app uses machine learning to analyze hundreds of vocal biomarkers that are indiscernible to the human ear, including the variability in pitch (fundamental frequency), the patterns in speech energy distribution (Mel-frequency cepstral coefficients), and the sharpness of sound changes (spectral contrast).

"By leveraging various classifiers and establishing gender-based predictive models, we discovered a more accessible way to detect hypertension, which we hope will lead to earlier intervention for this widespread global health issue. Hypertension can lead to a number of complications, from heart attacks and kidney problems to dementia," said Yan Fossat, senior vice president of Klick Labs and principal investigator of the study.

The World Health Organization (WHO) refers to hypertension as the "silent killer," as well as a global public health concern that affects over 25 percent of the global population. Half are unaware of their condition, and more than 75 percent of those diagnosed live in low- or middle-income countries.

Conventional methods of measuring blood pressure (and, accordingly, identifying hypertension) include using an arm cuff (sphygmomanometry) or an automatic blood pressure measurement device. However, these methods may require technical expertise, specialized equipment, and may not be readily accessible to people in underserved areas.

This study marks Klick Labs' first venture into using voice technology to identify conditions beyond diabetes, as the company expands its research to assess its AI algorithms' effectiveness in detecting and managing a broader range of health conditions. Klick Labs has been collaborating with hospitals, academic institutions, and public health authorities worldwide since its research revealed that voice analysis combined with AI can accurately screen for Type 2 diabetes in Mayo Clinic Proceedings: Digital Health in October 2023). Last week, Scientific Reports published another Klick Labs' study confirming the link between blood glucose levels and voice pitch.

"Voice technology has the potential to exponentially transform healthcare, making it more accessible and affordable, especially for large, underserved populations," said Jaycee Kaufman, Klick Labs research scientist and co-author of the study. "Our ongoing research increasingly demonstrates the significant promise of vocal biomarkers in detecting hypertension, diabetes, and a growing list of other health conditions."

B Taghibeyglou, JM Kaufman, Y Fossat.
Machine Learning-Enabled Hypertension Screening Through Acoustical Speech Analysis: Model Development and Validation.
IEEE Access, 2024. doi: 10.1109/ACCESS.2024.3443688

Most Popular Now

Stepping Hill Hospital Announced as SPAR…

Stepping Hill Hospital, part of Stockport NHS Foundation Trust, has replaced its bedside units with state-of-the art devices running a full range of information, engagement, communications and productivity apps, to...

DMEA 2025: Digital Health Worldwide in B…

8 - 10 April 2025, Berlin, Germany. From the AI Act, to the potential of the European Health Data Space, to the power of patient data in Scandinavia - DMEA 2025...

Is AI in Medicine Playing Fair?

As artificial intelligence (AI) rapidly integrates into health care, a new study by researchers at the Icahn School of Medicine at Mount Sinai reveals that all generative AI models may...

New System for the Early Detection of Au…

A team from the Human-Tech Institute-Universitat Politècnica de València has developed a new system for the early detection of Autism Spectrum Disorder (ASD) using virtual reality and artificial intelligence. The...

Generative AI's Diagnostic Capabili…

The use of generative AI for diagnostics has attracted attention in the medical field and many research papers have been published on this topic. However, because the evaluation criteria were...

Diagnoses and Treatment Recommendations …

A new study led by Prof. Dan Zeltzer, a digital health expert from the Berglas School of Economics at Tel Aviv University, compared the quality of diagnostic and treatment recommendations...

AI Tool can Track Effectiveness of Multi…

A new artificial intelligence (AI) tool that can help interpret and assess how well treatments are working for patients with multiple sclerosis (MS) has been developed by UCL researchers. AI uses...

Surrey and Sussex Healthcare NHS Trust g…

Surrey and Sussex Healthcare NHS Trust has marked an important milestone in connecting busy radiologists across large parts of South East England, following the successful go live of Sectra's enterprise...

Dr Jason Broch Joins the Highland Market…

The Highland Marketing advisory board has welcomed a new member - Dr Jason Broch, a GP and director with a strong track record in the NHS and IT-enabled transformation. Dr Broch...

DMEA 2025 Ends with Record Attendance an…

8 - 10 April 2025, Berlin, Germany. DMEA 2025 came to a successful close with record attendance and an impressive program. 20,500 participants attended Europe's leading digital health event over the...

Multi-Resistance in Bacteria Predicted b…

An AI model trained on large amounts of genetic data can predict whether bacteria will become antibiotic-resistant. The new study shows that antibiotic resistance is more easily transmitted between genetically...

AI-Driven Smart Devices to Transform Hea…

AI-powered, internet-connected medical devices have the potential to revolutionise healthcare by enabling early disease detection, real-time patient monitoring, and personalised treatments, a new study suggests. They are already saving lives...