Scientists Use AI to Detect Chronic High Blood Pressure in People's Voice Recordings

Researchers at Klick Labs unveiled a cutting-edge, non-invasive technique that can predict chronic high blood pressure (hypertension) with a high degree of accuracy using just a person's voice. Just published in the peer-reviewed journal IEEE Access, the findings hold tremendous potential for advancing early detection of chronic high blood pressure and showcase yet another novel way to harness vocal biomarkers for better health outcomes.

The study's 245 participants were asked to record their voices up to six times daily for two weeks by speaking into a proprietary mobile app, developed by the Klick scientists, which detected high blood pressure with accuracies up to 84 percent for females and 77 percent for males. The app uses machine learning to analyze hundreds of vocal biomarkers that are indiscernible to the human ear, including the variability in pitch (fundamental frequency), the patterns in speech energy distribution (Mel-frequency cepstral coefficients), and the sharpness of sound changes (spectral contrast).

"By leveraging various classifiers and establishing gender-based predictive models, we discovered a more accessible way to detect hypertension, which we hope will lead to earlier intervention for this widespread global health issue. Hypertension can lead to a number of complications, from heart attacks and kidney problems to dementia," said Yan Fossat, senior vice president of Klick Labs and principal investigator of the study.

The World Health Organization (WHO) refers to hypertension as the "silent killer," as well as a global public health concern that affects over 25 percent of the global population. Half are unaware of their condition, and more than 75 percent of those diagnosed live in low- or middle-income countries.

Conventional methods of measuring blood pressure (and, accordingly, identifying hypertension) include using an arm cuff (sphygmomanometry) or an automatic blood pressure measurement device. However, these methods may require technical expertise, specialized equipment, and may not be readily accessible to people in underserved areas.

This study marks Klick Labs' first venture into using voice technology to identify conditions beyond diabetes, as the company expands its research to assess its AI algorithms' effectiveness in detecting and managing a broader range of health conditions. Klick Labs has been collaborating with hospitals, academic institutions, and public health authorities worldwide since its research revealed that voice analysis combined with AI can accurately screen for Type 2 diabetes in Mayo Clinic Proceedings: Digital Health in October 2023). Last week, Scientific Reports published another Klick Labs' study confirming the link between blood glucose levels and voice pitch.

"Voice technology has the potential to exponentially transform healthcare, making it more accessible and affordable, especially for large, underserved populations," said Jaycee Kaufman, Klick Labs research scientist and co-author of the study. "Our ongoing research increasingly demonstrates the significant promise of vocal biomarkers in detecting hypertension, diabetes, and a growing list of other health conditions."

B Taghibeyglou, JM Kaufman, Y Fossat.
Machine Learning-Enabled Hypertension Screening Through Acoustical Speech Analysis: Model Development and Validation.
IEEE Access, 2024. doi: 10.1109/ACCESS.2024.3443688

Most Popular Now

Giving Doctors an AI-Powered Head Start …

Detection of melanoma and a range of other skin diseases will be faster and more accurate with a new artificial intelligence (AI) powered tool that analyses multiple imaging types simultaneously...

Philips Foundation 2024 Annual Report: E…

Marking its tenth anniversary, Philips Foundation released its 2024 Annual Report, highlighting a year in which the Philips Foundation helped provide access to quality healthcare for 46.5 million people around...

Scientists Argue for More FDA Oversight …

An agile, transparent, and ethics-driven oversight system is needed for the U.S. Food and Drug Administration (FDA) to balance innovation with patient safety when it comes to artificial intelligence-driven medical...

AI Agents for Oncology

Clinical decision-making in oncology is challenging and requires the analysis of various data types - from medical imaging and genetic information to patient records and treatment guidelines. To effectively support...

Start-ups in the Spotlight at MEDICA 202…

17 - 20 November 2025, Düsseldorf, Germany. MEDICA, the leading international trade fair and platform for healthcare innovations, will once again confirm its position as the world's number one hotspot for...

AI Medical Receptionist Modernizing Doct…

A virtual medical receptionist named "Cassie," developed through research at Texas A&M University, is transforming the way patients interact with health care providers. Cassie is a digital-human assistant created by Humanate...

Using Data and AI to Create Better Healt…

Academic medical centers could transform patient care by adopting principles from learning health systems principles, according to researchers from Weill Cornell Medicine and the University of California, San Diego. In...

AI Tool Set to Transform Characterisatio…

A multinational team of researchers, co-led by the Garvan Institute of Medical Research, has developed and tested a new AI tool to better characterise the diversity of individual cells within...

AI Detects Hidden Heart Disease Using Ex…

Mass General Brigham researchers have developed a new AI tool in collaboration with the United States Department of Veterans Affairs (VA) to probe through previously collected CT scans and identify...

Highland Marketing Announced as Official…

Highland Marketing has been named, for the second year running, the official communications partner for HETT Show 2025, the UK's leading digital health conference and exhibition. Taking place 7-8 October...

Human-AI Collectives Make the Most Accur…

Diagnostic errors are among the most serious problems in everyday medical practice. AI systems - especially large language models (LLMs) like ChatGPT-4, Gemini, or Claude 3 - offer new ways...

MHP-Net: A Revolutionary AI Model for Ac…

Liver cancer is the sixth most common cancer globally and a leading cause of cancer-related deaths. Accurate segmentation of liver tumors is a crucial step for the management of the...