Scientists Use AI to Detect Chronic High Blood Pressure in People's Voice Recordings

Researchers at Klick Labs unveiled a cutting-edge, non-invasive technique that can predict chronic high blood pressure (hypertension) with a high degree of accuracy using just a person's voice. Just published in the peer-reviewed journal IEEE Access, the findings hold tremendous potential for advancing early detection of chronic high blood pressure and showcase yet another novel way to harness vocal biomarkers for better health outcomes.

The study's 245 participants were asked to record their voices up to six times daily for two weeks by speaking into a proprietary mobile app, developed by the Klick scientists, which detected high blood pressure with accuracies up to 84 percent for females and 77 percent for males. The app uses machine learning to analyze hundreds of vocal biomarkers that are indiscernible to the human ear, including the variability in pitch (fundamental frequency), the patterns in speech energy distribution (Mel-frequency cepstral coefficients), and the sharpness of sound changes (spectral contrast).

"By leveraging various classifiers and establishing gender-based predictive models, we discovered a more accessible way to detect hypertension, which we hope will lead to earlier intervention for this widespread global health issue. Hypertension can lead to a number of complications, from heart attacks and kidney problems to dementia," said Yan Fossat, senior vice president of Klick Labs and principal investigator of the study.

The World Health Organization (WHO) refers to hypertension as the "silent killer," as well as a global public health concern that affects over 25 percent of the global population. Half are unaware of their condition, and more than 75 percent of those diagnosed live in low- or middle-income countries.

Conventional methods of measuring blood pressure (and, accordingly, identifying hypertension) include using an arm cuff (sphygmomanometry) or an automatic blood pressure measurement device. However, these methods may require technical expertise, specialized equipment, and may not be readily accessible to people in underserved areas.

This study marks Klick Labs' first venture into using voice technology to identify conditions beyond diabetes, as the company expands its research to assess its AI algorithms' effectiveness in detecting and managing a broader range of health conditions. Klick Labs has been collaborating with hospitals, academic institutions, and public health authorities worldwide since its research revealed that voice analysis combined with AI can accurately screen for Type 2 diabetes in Mayo Clinic Proceedings: Digital Health in October 2023). Last week, Scientific Reports published another Klick Labs' study confirming the link between blood glucose levels and voice pitch.

"Voice technology has the potential to exponentially transform healthcare, making it more accessible and affordable, especially for large, underserved populations," said Jaycee Kaufman, Klick Labs research scientist and co-author of the study. "Our ongoing research increasingly demonstrates the significant promise of vocal biomarkers in detecting hypertension, diabetes, and a growing list of other health conditions."

B Taghibeyglou, JM Kaufman, Y Fossat.
Machine Learning-Enabled Hypertension Screening Through Acoustical Speech Analysis: Model Development and Validation.
IEEE Access, 2024. doi: 10.1109/ACCESS.2024.3443688

Most Popular Now

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

Are You Eligible for a Clinical Trial? C…

A new study in the academic journal Machine Learning: Health discovers that ChatGPT can accelerate patient screening for clinical trials, showing promise in reducing delays and improving trial success rates. Researchers...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...

Global Study Reveals How Patients View M…

How physicians feel about artificial intelligence (AI) in medicine has been studied many times. But what do patients think? A team led by researchers at the Technical University of Munich...