Scientists Use AI to Detect Chronic High Blood Pressure in People's Voice Recordings

Researchers at Klick Labs unveiled a cutting-edge, non-invasive technique that can predict chronic high blood pressure (hypertension) with a high degree of accuracy using just a person's voice. Just published in the peer-reviewed journal IEEE Access, the findings hold tremendous potential for advancing early detection of chronic high blood pressure and showcase yet another novel way to harness vocal biomarkers for better health outcomes.

The study's 245 participants were asked to record their voices up to six times daily for two weeks by speaking into a proprietary mobile app, developed by the Klick scientists, which detected high blood pressure with accuracies up to 84 percent for females and 77 percent for males. The app uses machine learning to analyze hundreds of vocal biomarkers that are indiscernible to the human ear, including the variability in pitch (fundamental frequency), the patterns in speech energy distribution (Mel-frequency cepstral coefficients), and the sharpness of sound changes (spectral contrast).

"By leveraging various classifiers and establishing gender-based predictive models, we discovered a more accessible way to detect hypertension, which we hope will lead to earlier intervention for this widespread global health issue. Hypertension can lead to a number of complications, from heart attacks and kidney problems to dementia," said Yan Fossat, senior vice president of Klick Labs and principal investigator of the study.

The World Health Organization (WHO) refers to hypertension as the "silent killer," as well as a global public health concern that affects over 25 percent of the global population. Half are unaware of their condition, and more than 75 percent of those diagnosed live in low- or middle-income countries.

Conventional methods of measuring blood pressure (and, accordingly, identifying hypertension) include using an arm cuff (sphygmomanometry) or an automatic blood pressure measurement device. However, these methods may require technical expertise, specialized equipment, and may not be readily accessible to people in underserved areas.

This study marks Klick Labs' first venture into using voice technology to identify conditions beyond diabetes, as the company expands its research to assess its AI algorithms' effectiveness in detecting and managing a broader range of health conditions. Klick Labs has been collaborating with hospitals, academic institutions, and public health authorities worldwide since its research revealed that voice analysis combined with AI can accurately screen for Type 2 diabetes in Mayo Clinic Proceedings: Digital Health in October 2023). Last week, Scientific Reports published another Klick Labs' study confirming the link between blood glucose levels and voice pitch.

"Voice technology has the potential to exponentially transform healthcare, making it more accessible and affordable, especially for large, underserved populations," said Jaycee Kaufman, Klick Labs research scientist and co-author of the study. "Our ongoing research increasingly demonstrates the significant promise of vocal biomarkers in detecting hypertension, diabetes, and a growing list of other health conditions."

B Taghibeyglou, JM Kaufman, Y Fossat.
Machine Learning-Enabled Hypertension Screening Through Acoustical Speech Analysis: Model Development and Validation.
IEEE Access, 2024. doi: 10.1109/ACCESS.2024.3443688

Most Popular Now

Philips Foundation 2024 Annual Report: E…

Marking its tenth anniversary, Philips Foundation released its 2024 Annual Report, highlighting a year in which the Philips Foundation helped provide access to quality healthcare for 46.5 million people around...

New AI Transforms Radiology with Speed, …

A first-of-its-kind generative AI system, developed in-house at Northwestern Medicine, is revolutionizing radiology - boosting productivity, identifying life-threatening conditions in milliseconds and offering a breakthrough solution to the global radiologist...

Scientists Argue for More FDA Oversight …

An agile, transparent, and ethics-driven oversight system is needed for the U.S. Food and Drug Administration (FDA) to balance innovation with patient safety when it comes to artificial intelligence-driven medical...

New Research Finds Specific Learning Str…

If data used to train artificial intelligence models for medical applications, such as hospitals across the Greater Toronto Area, differs from the real-world data, it could lead to patient harm...

Giving Doctors an AI-Powered Head Start …

Detection of melanoma and a range of other skin diseases will be faster and more accurate with a new artificial intelligence (AI) powered tool that analyses multiple imaging types simultaneously...

AI Agents for Oncology

Clinical decision-making in oncology is challenging and requires the analysis of various data types - from medical imaging and genetic information to patient records and treatment guidelines. To effectively support...

Patients say "Yes..ish" to the…

As artificial intelligence (AI) continues to be integrated in healthcare, a new multinational study involving Aarhus University sheds light on how dental patients really feel about its growing role in...

Brains vs. Bytes: Study Compares Diagnos…

A University of Maine study compared how well artificial intelligence (AI) models and human clinicians handled complex or sensitive medical cases. The study published in the Journal of Health Organization...

'AI Scientist' Suggests Combin…

An 'AI scientist', working in collaboration with human scientists, has found that combinations of cheap and safe drugs - used to treat conditions such as high cholesterol and alcohol dependence...

Start-ups in the Spotlight at MEDICA 202…

17 - 20 November 2025, Düsseldorf, Germany. MEDICA, the leading international trade fair and platform for healthcare innovations, will once again confirm its position as the world's number one hotspot for...