New AI-Driven Tool could Revolutionize Brain Pressure Monitoring in Intensive Care Patients

Researchers at the Icahn School of Medicine at Mount Sinai have developed a noninvasive technique that could dramatically improve the way doctors monitor intracranial hypertension, a condition where increased pressure in the brain can lead to severe outcomes like strokes and hemorrhages.

The new approach, driven by artificial intelligence (AI), offers a safer and faster alternative to the current gold standard of drilling into the skull. Details were reported in the September 5 online issue of npj Digital Medicine.

Currently, detecting and monitoring elevated brain pressure requires invasive procedures that breach the skull. Instead, the research team explored whether intracranial pressure could be predicted by analyzing noninvasive waveform data, such as electrocardiograms, oxygen saturation levels from pulse oximetry, and waveforms obtained from routine head ultrasounds in critical care patients.

They then developed an AI model capable of generating a representation of brain blood pressure. This model was trained using de-identified patient data from those who had their intracranial pressure measured through invasive methods, such as lumbar catheters or pressure-sensitive probes inserted into the skull. The real-time monitoring tool allows for swift detection of critical changes, enabling health care providers to intervene more quickly and potentially save lives, say the investigators.

"Increased pressure in the brain can lead to a range of serious complications. We created a noninvasive approach - an AI-derived biomarker for detecting elevated brain pressure - using data already routinely collected in intensive care units (ICUs)," says first author Faris Gulamali, an MD candidate at Icahn Mount Sinai. "Importantly, our study, the largest to date on intracranial hypertension, is the first to provide external validation for our algorithm and demonstrate a direct link between the biomarker and clinical outcomes, which is required for FDA approval."

The study, a retrospective analysis, used data from two hospitals in different U.S. cities. The tool showed strong performance in detecting intracranial pressure within seconds. Over the course of a patient's admission, being in the top 25 percent of intracranial pressure measurements was linked to a 24-fold increase in the risk of a subdural hemorrhage and a seven-fold increase in the likelihood of needing a craniectomy (a surgical procedure to relieve pressure on the brain).

The researchers note that the data linking to clinical outcomes is correlational and not causative, and further research is needed to fully establish causality. Next, they plan to conduct further validation studies, including those focused on identifying patients with neurological conditions in the ICU. Additionally, they hope to apply for breakthrough device status with the FDA, possibly bringing this life-saving technology closer to widespread clinical use.

"Our vision is to integrate this tool into ICUs as a standard part of monitoring critically ill patients. This technology represents a major leap forward, potentially transforming how we manage critically ill patients, reducing the need for risky procedures and enabling faster responses to neurological emergencies," says senior author Girish Nadkarni, MD, PhD, Irene and Dr. Arthur M. Fishberg Professor of Medicine at Icahn Mount Sinai, Director of The Charles Bronfman Institute of Personalized Medicine, and System Chief, Division of Data-Driven and Digital Medicine. "In addition, our findings suggest it could be a valuable tool not only in neurology but also in managing other severe health conditions, such as post-cardiac arrest, glaucoma, and acute liver failure."

"Our team's development of this AI-driven clinical decision support tool could be a significant step forward in advancing health outcomes for critically ill patients. If we can validate the use of this tool, we have the potential to improve patient safety by fine-tuning the use of invasive intracranial invasive monitoring in patients with the greatest potential for benefit," says study co-author David L. Reich, MD, President of The Mount Sinai Hospital and Mount Sinai Queens, the Horace W. Goldsmith Professor of Anesthesiology, and Professor of Artificial Intelligence and Human Health at Icahn Mount Sinai. "One of our goals at Mount Sinai is using technology to bring the right team to the right patient at the right time. This tool exemplifies that commitment, offering a tailored solution that has the potential to improve the standard of care for patients at risk of life-threatening brain injuries."

Gulamali F, Jayaraman P, Sawant AS, Desman J, Fox B, Chang A, Soong BY, Arivazagan N, Reynolds AS, Duong SQ, Vaid A, Kovatch P, Freeman R, Hofer IS, Sakhuja A, Dangayach NS, Reich DS, Charney AW, Nadkarni GN.
Derivation, external and clinical validation of a deep learning approach for detecting intracranial hypertension.
NPJ Digit Med. 2024 Sep 5;7(1):233. doi: 10.1038/s41746-024-01227-0

Most Popular Now

Stepping Hill Hospital Announced as SPAR…

Stepping Hill Hospital, part of Stockport NHS Foundation Trust, has replaced its bedside units with state-of-the art devices running a full range of information, engagement, communications and productivity apps, to...

DMEA 2025: Digital Health Worldwide in B…

8 - 10 April 2025, Berlin, Germany. From the AI Act, to the potential of the European Health Data Space, to the power of patient data in Scandinavia - DMEA 2025...

Is AI in Medicine Playing Fair?

As artificial intelligence (AI) rapidly integrates into health care, a new study by researchers at the Icahn School of Medicine at Mount Sinai reveals that all generative AI models may...

New System for the Early Detection of Au…

A team from the Human-Tech Institute-Universitat Politècnica de València has developed a new system for the early detection of Autism Spectrum Disorder (ASD) using virtual reality and artificial intelligence. The...

Generative AI's Diagnostic Capabili…

The use of generative AI for diagnostics has attracted attention in the medical field and many research papers have been published on this topic. However, because the evaluation criteria were...

Diagnoses and Treatment Recommendations …

A new study led by Prof. Dan Zeltzer, a digital health expert from the Berglas School of Economics at Tel Aviv University, compared the quality of diagnostic and treatment recommendations...

AI Tool can Track Effectiveness of Multi…

A new artificial intelligence (AI) tool that can help interpret and assess how well treatments are working for patients with multiple sclerosis (MS) has been developed by UCL researchers. AI uses...

Surrey and Sussex Healthcare NHS Trust g…

Surrey and Sussex Healthcare NHS Trust has marked an important milestone in connecting busy radiologists across large parts of South East England, following the successful go live of Sectra's enterprise...

Dr Jason Broch Joins the Highland Market…

The Highland Marketing advisory board has welcomed a new member - Dr Jason Broch, a GP and director with a strong track record in the NHS and IT-enabled transformation. Dr Broch...

DMEA 2025 Ends with Record Attendance an…

8 - 10 April 2025, Berlin, Germany. DMEA 2025 came to a successful close with record attendance and an impressive program. 20,500 participants attended Europe's leading digital health event over the...

Multi-Resistance in Bacteria Predicted b…

An AI model trained on large amounts of genetic data can predict whether bacteria will become antibiotic-resistant. The new study shows that antibiotic resistance is more easily transmitted between genetically...

AI-Driven Smart Devices to Transform Hea…

AI-powered, internet-connected medical devices have the potential to revolutionise healthcare by enabling early disease detection, real-time patient monitoring, and personalised treatments, a new study suggests. They are already saving lives...