Machine learning helps identify rheumatoid arthritis subtypes

A machine-learning tool created by Weill Cornell Medicine and Hospital for Special Surgery (HSS) investigators can help distinguish subtypes of rheumatoid arthritis (RA), which may help scientists find ways to improve care for the complex condition.

The study published Aug. 29 in Nature Communications shows that artificial intelligence and machine learning technologies can effectively and efficiently subtype pathology samples from patients with RA.

"Our tool automates the analysis of pathology slides, which may one day lead to more precise and efficient disease diagnosis and personalized treatment for RA," said Dr. Fei Wang, a professor of population health sciences and the founding director of the Institute of AI for Digital Health (AIDH) in the Department of Population Health Sciences at Weill Cornell Medicine. "It shows that machine learning can potentially transform pathological assessment of many diseases."

There are several existing research developing machine learning tools for automatic analysis of pathology slides in oncology. Dr. Wang and his colleagues have been working to expand the use of this technology in other clinical specialties.

For the latest study, Dr. Wang teamed up with Dr. Richard Bell, an instructor in the Arthritis and Tissue Degeneration Program and Research Institute and a computational pathology analyst in the Molecular Histopathology Core Laboratory at the HSS, and Dr. Lionel Ivashkiv, chief scientific officer and chair of the Arthritis and Tissue Degeneration Program at HSS and professor of medicine at Weill Cornell Medicine, to automate the process of subtyping RA tissue samples. Distinguishing between the three subtypes of RA may help clinicians choose which therapy is most likely to be effective for a particular patient.

Pathologists currently manually classify arthritis subtypes using a rubric to identify cell and tissue characteristics in biopsy samples from human patients - a slow process that adds to the cost of research and may lead to inconsistencies between pathologists.

"It's the analytical bottleneck of pathology research," Dr. Bell said. "It is very time-consuming and tedious."

The team first trained its algorithm on RA samples from one set of mice, optimizing its ability to distinguish tissue and cell types in the sample and sort them by subtype. They validated the tool on a second set of samples. The tool also yielded new insights into treatment effects in the mice, such as reduced cartilage degradation within six weeks of administering commonly used RA treatments.

Then, they deployed the tool on patient biopsy samples from the Accelerating Medicines Partnership Rheumatoid Arthritis research consortium and showed it could effectively and efficiently type human clinical samples. The researchers are now validating the tool with additional patient samples and determining the best way to incorporate this new tool into pathologists' workflows.

"It's the first step towards more personalized RA care," Dr. Bell said. "If you can build an algorithm that identifies a patient’s subtype, you’ll be able to get patients the treatments they need more quickly."

The technology may provide new insights into the disease by detecting unexpected tissue changes that humans might miss. By saving pathologists time on subtyping, the tool may also decrease the cost and increase the efficiency of clinical trials testing treatments for patients with different subtypes of RA.

"By integrating pathology slides with clinical information, this tool demonstrates AI's growing impact in advancing personalized medicine," said Dr. Rainu Kaushal, senior associate dean for clinical research and chair of the Department of Population Health Sciences at Weill Cornell Medicine. "This research is particularly exciting as it opens new pathways for detection and treatment, making significant strides in how we understand and care for people with rheumatoid arthritis."

The team is working to develop similar tools for evaluating osteoarthritis, disc degeneration and tendinopathy. In addition, Dr. Wang's team is also looking at defining disease subtypes from broader biomedical information. For example, they've recently demonstrated that machine learning can distinguish three subtypes of Parkinson's disease. "We hope our research will trigger more computational research on developing machine learning tools for more diseases," Dr. Wang said.

"This work represents an important advance in analyzing RA tissues that can be applied for the benefit of patients," said Dr. Ivashkiv.

Bell RD, Brendel M, Konnaris MA, Xiang J, Otero M, Fontana MA, Bai Z; Accelerating Medicines Partnership Rheumatoid Arthritis and Systemic Lupus Erythematosus (AMP RA/SLE) Consortium; Krenitsky DM, Meednu N, Rangel-Moreno J, Scheel-Toellner D, Carr H, Nayar S, McMurray J, DiCarlo E, Anolik JH, Donlin LT, Orange DE, Kenney HM, Schwarz EM, Filer A, Ivashkiv LB, Wang F.
Automated multi-scale computational pathotyping (AMSCP) of inflamed synovial tissue.
Nat Commun. 2024 Aug 29;15(1):7503. doi: 10.1038/s41467-024-51012-6

Most Popular Now

AI-Powered CRISPR could Lead to Faster G…

Stanford Medicine researchers have developed an artificial intelligence (AI) tool to help scientists better plan gene-editing experiments. The technology, CRISPR-GPT, acts as a gene-editing “copilot” supported by AI to help...

Groundbreaking AI Aims to Speed Lifesavi…

To solve a problem, we have to see it clearly. Whether it’s an infection by a novel virus or memory-stealing plaques forming in the brains of Alzheimer’s patients, visualizing disease processes...

AI Spots Hidden Signs of Depression in S…

Depression is one of the most common mental health challenges, but its early signs are often overlooked. It is often linked to reduced facial expressivity. However, whether mild depression or...

AI Tools Help Predict Severe Asthma Risk…

Mayo Clinic researchers have developed artificial intelligence (AI) tools that help identify which children with asthma face the highest risk of serious asthma exacerbation and acute respiratory infections. The study...

AI Model Forecasts Disease Risk Decades …

Imagine a future where your medical history could help predict what health conditions you might face in the next two decades. Researchers have developed a generative AI model that uses...

AI Model Indicates Four out of Ten Breas…

A project at Lund University in Sweden has trained an AI model to identify breast cancer patients who could be spared from axillary surgery. The model analyses previously unutilised information...

ChatGPT 4o Therapeutic Chatbot 'Ama…

One of the first randomized controlled trials assessing the effectiveness of a large language model (LLM) chatbot 'Amanda' for relationship support shows that a single session of chatbot therapy...

AI Distinguishes Glioblastoma from Look-…

A Harvard Medical School–led research team has developed an AI tool that can reliably tell apart two look-alike cancers found in the brain but with different origins, behaviors, and treatments. The...

Smart Device Uses AI and Bioelectronics …

As a wound heals, it goes through several stages: clotting to stop bleeding, immune system response, scabbing, and scarring. A wearable device called "a-Heal," designed by engineers at the University...

Overcoming the AI Applicability Crisis a…

Opinion Article by Harry Lykostratis, Chief Executive, Open Medical. The government’s 10 Year Health Plan makes a lot of the potential of AI-software to support clinical decision making, improve productivity, and...

Dartford and Gravesham Implements Clinis…

Dartford and Gravesham NHS Trust has taken a significant step towards a more digital future by rolling out electronic test ordering using Clinisys ICE. The trust deployed the order communications...