New AI Software could Make Diagnosing Dementia Easier and Faster for Doctors

Although Alzheimer's is the most common cause of dementia - a catchall term for cognitive deficits that impact daily living, like the loss of memory or language - it's not the only one. Because multiple causes of dementia can happen simultaneously, reaching a definitive diagnosis isn't easy or quick. And often by then, it’s too late to intervene.

Boston University's Vijaya B. Kolachalama, an expert on using computers to aid medical diagnoses, has created an artificial intelligence tool that can determine what’s causing a person's cognitive decline, and assist doctors in more efficiently zeroing in on an accurate diagnosis.

Developed with a team of BU researchers and outside collaborators, it accurately identifies specific causes of dementia using commonly collected patient information - like medical history, medication use, demographic data, and neurological and neuropsychological exam scores - and neuroimaging data, such as magnetic resonance imaging (MRI) scans. For each case, all the available information is entered into the AI-powered software, which then generates a prediction of the type of dementia a person has and a confidence score. The findings are published in Nature Medicine.

"We believe AI can help by identifying these disorders early and assisting doctors in managing their patients more effectively, preventing the diseases from getting worse," says Kolachalama, a BU associate professor of medicine and computer science, and corresponding author on the paper.

The platform can diagnose 10 different types of dementia, including vascular dementia and frontotemporal dementia, even if they occur together. As new drugs gain approval for treating Alzheimer's - such as Kisunla, an injection that the US Food & Drug Administration recently approved for people with mild cognitive impairment - Kolachalama is hopeful that his team’s AI tool can help determine who can benefit from different treatments or participate in clinical trials to help bring more drugs to market.

The algorithm was trained on data from more than 50,000 individuals from nine different datasets collected around the world. To test the software's performance, the researchers gave neurologists working alone and neurologists using the computer model 100 cases to evaluate. They then compared the results of doctors working solo versus those using the software - and found the software boosted the doctors’ accuracy by 26 percent.

Kolachalama collaborates with neurologists and radiologists from around the world who all have access to different types of patient information. For that reason, the software works even with limited information. For example, MRI machines are not as prevalent in under-resourced hospitals in low-income countries, so having a tool that can use any type of available patient data is key for expanding the technology to areas that need it most.

"The ability to generate a diagnosis with routine clinical data is becoming increasingly important given the significant challenges in accessing gold-standard testing, not only in remote and economically developing regions, but [also] in urban healthcare centers," says Kolachalama.

He points out that there is a shortage of neurology experts around the world, and with the number of neurology patients growing, this mismatch is putting a big strain on healthcare systems. Having a software program that can assist in diagnosing could help lift the burden that's falling on doctors with limited time and resources, Kolachalama says. The next step for the AI tool is bringing it to hospitals and doctors' offices for field testing - a goal that Kolachalama and his team are actively working toward.

Xue C, Kowshik SS, Lteif D, Puducheri S, Jasodanand VH, Zhou OT, Walia AS, Guney OB, Zhang JD, Pham ST, Kaliaev A, Andreu-Arasa VC, Dwyer BC, Farris CW, Hao H, Kedar S, Mian AZ, Murman DL, O'Shea SA, Paul AB, Rohatgi S, Saint-Hilaire MH, Sartor EA, Setty BN, Small JE, Swaminathan A, Taraschenko O, Yuan J, Zhou Y, Zhu S, Karjadi C, Alvin Ang TF, Bargal SA, Plummer BA, Poston KL, Ahangaran M, Au R, Kolachalama VB.
AI-based differential diagnosis of dementia etiologies on multimodal data.
Nat Med. 2024 Jul 4. doi: 10.1038/s41591-024-03118-z

Most Popular Now

European Artificial Intelligence Act Com…

The European Artificial Intelligence Act (AI Act), the world's first comprehensive regulation on artificial intelligence, enters into force. The AI Act is designed to ensure that AI developed and used...

Generative AI can Not yet Reliably Read …

It may someday be possible to use Large Language Models (LLM) to automatically read clinical notes in medical records and reliably and efficiently extract relevant information to support patient care...

AI can Help Rule out Abnormal Pathology …

A commercial artificial intelligence (AI) tool used off-label was effective at excluding pathology and had equal or lower rates of critical misses on chest X-ray than radiologists, according to a...

Patient Safety must be Central to the De…

An EPR system brings together different patient information in one place, making it easier to access for healthcare professionals. This information can include patients' own notes, test results, observations by...

ChatGPT Shows Promise in Answering Patie…

The groundbreaking ChatGPT chatbot shows potential as a time-saving tool for responding to patient questions sent to the urologist's office, suggests a study in the September issue of Urology Practice®...

What Does the EU's Recent AI Act Me…

The European Union's law on artificial intelligence came into force on 1 August. The new AI Act essentially regulates what artificial intelligence can and cannot do in the EU. A...

Survey: Most Americans Comfortable with …

Artificial intelligence (AI) is all around us - from smart home devices to entertainment and social media algorithms. But is AI okay in healthcare? A new national survey commissioned by...

AI Spots Cancer and Viral Infections at …

Researchers at the Centre for Genomic Regulation (CRG), the University of the Basque Country (UPV/EHU), Donostia International Physics Center (DIPC) and the Fundación Biofisica Bizkaia (FBB, located in Biofisika Institute)...

Video Gaming Improves Mental Well-Being

A pioneering study titled "Causal effect of video gaming on mental well-being in Japan 2020-2022," published in Nature Human Behaviour, has conducted the most comprehensive investigation to date on the...

New Diabetes Research Links Blood Glucos…

As part of its ongoing exploration of vocal biomarkers and the role they can play in enhancing health outcomes, Klick Labs published a new study in Scientific Reports - confirming...

New AI Software could Make Diagnosing De…

Although Alzheimer's is the most common cause of dementia - a catchall term for cognitive deficits that impact daily living, like the loss of memory or language - it's not...

Machine learning helps identify rheumato…

A machine-learning tool created by Weill Cornell Medicine and Hospital for Special Surgery (HSS) investigators can help distinguish subtypes of rheumatoid arthritis (RA), which may help scientists find ways to...