New AI Software could Make Diagnosing Dementia Easier and Faster for Doctors

Although Alzheimer's is the most common cause of dementia - a catchall term for cognitive deficits that impact daily living, like the loss of memory or language - it's not the only one. Because multiple causes of dementia can happen simultaneously, reaching a definitive diagnosis isn't easy or quick. And often by then, it’s too late to intervene.

Boston University's Vijaya B. Kolachalama, an expert on using computers to aid medical diagnoses, has created an artificial intelligence tool that can determine what’s causing a person's cognitive decline, and assist doctors in more efficiently zeroing in on an accurate diagnosis.

Developed with a team of BU researchers and outside collaborators, it accurately identifies specific causes of dementia using commonly collected patient information - like medical history, medication use, demographic data, and neurological and neuropsychological exam scores - and neuroimaging data, such as magnetic resonance imaging (MRI) scans. For each case, all the available information is entered into the AI-powered software, which then generates a prediction of the type of dementia a person has and a confidence score. The findings are published in Nature Medicine.

"We believe AI can help by identifying these disorders early and assisting doctors in managing their patients more effectively, preventing the diseases from getting worse," says Kolachalama, a BU associate professor of medicine and computer science, and corresponding author on the paper.

The platform can diagnose 10 different types of dementia, including vascular dementia and frontotemporal dementia, even if they occur together. As new drugs gain approval for treating Alzheimer's - such as Kisunla, an injection that the US Food & Drug Administration recently approved for people with mild cognitive impairment - Kolachalama is hopeful that his team’s AI tool can help determine who can benefit from different treatments or participate in clinical trials to help bring more drugs to market.

The algorithm was trained on data from more than 50,000 individuals from nine different datasets collected around the world. To test the software's performance, the researchers gave neurologists working alone and neurologists using the computer model 100 cases to evaluate. They then compared the results of doctors working solo versus those using the software - and found the software boosted the doctors’ accuracy by 26 percent.

Kolachalama collaborates with neurologists and radiologists from around the world who all have access to different types of patient information. For that reason, the software works even with limited information. For example, MRI machines are not as prevalent in under-resourced hospitals in low-income countries, so having a tool that can use any type of available patient data is key for expanding the technology to areas that need it most.

"The ability to generate a diagnosis with routine clinical data is becoming increasingly important given the significant challenges in accessing gold-standard testing, not only in remote and economically developing regions, but [also] in urban healthcare centers," says Kolachalama.

He points out that there is a shortage of neurology experts around the world, and with the number of neurology patients growing, this mismatch is putting a big strain on healthcare systems. Having a software program that can assist in diagnosing could help lift the burden that's falling on doctors with limited time and resources, Kolachalama says. The next step for the AI tool is bringing it to hospitals and doctors' offices for field testing - a goal that Kolachalama and his team are actively working toward.

Xue C, Kowshik SS, Lteif D, Puducheri S, Jasodanand VH, Zhou OT, Walia AS, Guney OB, Zhang JD, Pham ST, Kaliaev A, Andreu-Arasa VC, Dwyer BC, Farris CW, Hao H, Kedar S, Mian AZ, Murman DL, O'Shea SA, Paul AB, Rohatgi S, Saint-Hilaire MH, Sartor EA, Setty BN, Small JE, Swaminathan A, Taraschenko O, Yuan J, Zhou Y, Zhu S, Karjadi C, Alvin Ang TF, Bargal SA, Plummer BA, Poston KL, Ahangaran M, Au R, Kolachalama VB.
AI-based differential diagnosis of dementia etiologies on multimodal data.
Nat Med. 2024 Jul 4. doi: 10.1038/s41591-024-03118-z

Most Popular Now

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

Are You Eligible for a Clinical Trial? C…

A new study in the academic journal Machine Learning: Health discovers that ChatGPT can accelerate patient screening for clinical trials, showing promise in reducing delays and improving trial success rates. Researchers...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...

Global Study Reveals How Patients View M…

How physicians feel about artificial intelligence (AI) in medicine has been studied many times. But what do patients think? A team led by researchers at the Technical University of Munich...