Generative AI can Not yet Reliably Read and Extract Information from Clinical Notes in Medical Records

It may someday be possible to use Large Language Models (LLM) to automatically read clinical notes in medical records and reliably and efficiently extract relevant information to support patient care or research. But recent research from Columbia University Mailman School of Public Health using ChatGPT-4 to read medical notes from Emergency Department admissions to determine whether injured scooter and bicycle riders were wearing a helmet finds that LLM can't yet do this reliably. The findings are published in JAMA Network Open.

In a study of 54,569 emergency department visits among patients injured while riding a bicycle, scooter or other micromobility conveyance from 2019 to 2022, the AI LLM had difficulty replicating results of a text string–search based approach for extracting helmet status from clinical notes. The LLM only performed well when the prompt included all of the text used in the text string search-based approach. The LLM also had difficulty replicating its work across trials on each of five successive days, it did better t replicating its hallucinations than its accurate work. It particularly struggled when phrases were negated, such as reading "w/o helmet" or "unhelmeted" and reporting that the patient wore a helmet.

Large amounts of medically relevant data are included in electronic medical records in the form of written clinical notes, a type of unstructured data. Efficient ways to read and extract information from these notes would be extremely useful for research. Currently information from these clinical notes can be extracted using simple string-matching text search approaches or through more sophisticated artificial intelligence (AI)-based approaches such as natural language processing. The hope was that new LLM, such as ChatGPT-4, could extract information faster and more reliably.

"While we see potential efficiency gains in using the generative AI LLM for information extraction tasks, issues of reliability and hallucinations currently limit its utility," said Andrew Rundle, DrPH, professor of Epidemiology at Columbia Mailman School and senior author. "When we used highly detailed prompts that included all of the text strings related to helmets, on some days ChatGPT-4 could extract accurate data from the clinical notes. But the time required to define and test all of the text that had to be included in the prompt and ChatGPT-4's inability to replicate its work, day after day, indicates to us that ChatGPT-4 was not yet up to this task."

Using publicly available 2019 to 2022 data from the U.S. Consumer Product Safety Commission's National Electronic Injury Surveillance System, a sample of 96 U.S. hospitals, Rundle and colleagues analyzed emergency department records of patients injured in e-bike, bicycle, hoverboard, and powered scooter accidents. They compared the results of ChatGPT-4's analyses of the records to data generated using more traditional text-string-based searches, and for 400 records, they compared ChatGPT's analyses to their own reading of the clinical notes in the records.

This research builds on their work studying how to prevent injuries among micromobility users (i.e. bicyclists, e-bike riders, scooter riders). "Helmet use is a key factor in injury severity, yet in most emergency department medical records and incident reports information on helmet use is buried in the clinical notes written by the physician or EMS respondent. There is a significant research need to be able to reliably and efficiently access this information." said Kathryn Burford, the lead author on the paper and a post-doctoral fellow in the Department of Epidemiology at the Mailman School.

"Our study examined the potential of an LLM for extracting information from clinical notes, a rich source of information for health professionals and researchers," said Rundle. "But at the time we used ChatGPT-4 it could not reliably provide us with data."

Burford KG, Itzkowitz NG, Ortega AG, Teitler JO, Rundle AG.
Use of Generative AI to Identify Helmet Status Among Patients With Micromobility-Related Injuries From Unstructured Clinical Notes.
JAMA Netw Open. 2024 Aug 1;7(8):e2425981. doi: 10.1001/jamanetworkopen.2024.25981

Most Popular Now

Stepping Hill Hospital Announced as SPAR…

Stepping Hill Hospital, part of Stockport NHS Foundation Trust, has replaced its bedside units with state-of-the art devices running a full range of information, engagement, communications and productivity apps, to...

DMEA 2025: Digital Health Worldwide in B…

8 - 10 April 2025, Berlin, Germany. From the AI Act, to the potential of the European Health Data Space, to the power of patient data in Scandinavia - DMEA 2025...

Is AI in Medicine Playing Fair?

As artificial intelligence (AI) rapidly integrates into health care, a new study by researchers at the Icahn School of Medicine at Mount Sinai reveals that all generative AI models may...

New System for the Early Detection of Au…

A team from the Human-Tech Institute-Universitat Politècnica de València has developed a new system for the early detection of Autism Spectrum Disorder (ASD) using virtual reality and artificial intelligence. The...

Generative AI's Diagnostic Capabili…

The use of generative AI for diagnostics has attracted attention in the medical field and many research papers have been published on this topic. However, because the evaluation criteria were...

Diagnoses and Treatment Recommendations …

A new study led by Prof. Dan Zeltzer, a digital health expert from the Berglas School of Economics at Tel Aviv University, compared the quality of diagnostic and treatment recommendations...

AI Tool can Track Effectiveness of Multi…

A new artificial intelligence (AI) tool that can help interpret and assess how well treatments are working for patients with multiple sclerosis (MS) has been developed by UCL researchers. AI uses...

Surrey and Sussex Healthcare NHS Trust g…

Surrey and Sussex Healthcare NHS Trust has marked an important milestone in connecting busy radiologists across large parts of South East England, following the successful go live of Sectra's enterprise...

Dr Jason Broch Joins the Highland Market…

The Highland Marketing advisory board has welcomed a new member - Dr Jason Broch, a GP and director with a strong track record in the NHS and IT-enabled transformation. Dr Broch...

DMEA 2025 Ends with Record Attendance an…

8 - 10 April 2025, Berlin, Germany. DMEA 2025 came to a successful close with record attendance and an impressive program. 20,500 participants attended Europe's leading digital health event over the...

Multi-Resistance in Bacteria Predicted b…

An AI model trained on large amounts of genetic data can predict whether bacteria will become antibiotic-resistant. The new study shows that antibiotic resistance is more easily transmitted between genetically...

AI-Driven Smart Devices to Transform Hea…

AI-powered, internet-connected medical devices have the potential to revolutionise healthcare by enabling early disease detection, real-time patient monitoring, and personalised treatments, a new study suggests. They are already saving lives...