New AI Tool Predicts Risk for Chronic Pain in Cancer Patients

A third of cancer patients face chronic pain - a debilitating condition that can dramatically reduce a person's quality of life, even if their cancer goes into remission.

Although doctors have some tools for addressing chronic pain, figuring out who is most at risk for developing it is no easy feat. But a new study, conducted by researchers at the University of Florida and other institutions, uses artificial intelligence (AI) to predict which breast cancer patients are most at risk for developing chronic pain. The predictive model could help doctors address underlying conditions that contribute to making pain chronic and ultimately lead to more effective treatments.

"We want to understand the factors that lead someone from having cancer to having chronic pain and how can we better manage these factors," said Lisiane Pruinelli, Ph.D., M.S., R.N., FAMIA, the senior author of the new study and a professor of family, community, and health systems science in the UF College of Nursing. "Our goal is to link this information to some profile of patients so we can identify early on what patients are at risk for developing chronic pain."

The findings of the study were published on July 26 in the Journal of Nursing Scholarship. The authors included Pruinelli, Jung In Park, Ph.D., R.N., FAMIA, of the University of California, Irvine, and Steven Johnson, Ph.D., of the University of Minnesota.

The results showed that, when built with detailed data on more than 1,000 breast cancer patients, the AI model could correctly predict which patients would develop chronic pain more than 80% of the time. The leading factors that were associated with chronic pain included anxiety and depression, previous cancer diagnoses, and certain infections.

Implementing a model like this in doctors' offices would require integrating it into the electronic healthcare records systems that are now ubiquitous in clinics, which would take more research. The researchers said the rise of AI has the potential to help doctors tailor their treatments to a patient's unique disease characteristics.

"Now with the amount of data we have, and with the use of artificial intelligence, we can actually personalize treatments based on patient needs and how they would respond to that treatment," Pruinelli said.

The study was based on the large amount of data made available by the All of Us Research Program, a nationwide research campaign from the National Institutes of Health that seeks to collect anonymized healthcare records from 1 million Americans.

"This wouldn't be possible if we didn't have people contributing their data," Pruinelli said.

Park JI, Johnson S, Pruinelli L.
Optimizing pain management in breast cancer care: Utilizing 'All of Us' data and deep learning to identify patients at elevated risk for chronic pain.
J Nurs Scholarsh. 2024 Jul 26. doi: 10.1111/jnu.13009

Most Popular Now

Philips Foundation 2024 Annual Report: E…

Marking its tenth anniversary, Philips Foundation released its 2024 Annual Report, highlighting a year in which the Philips Foundation helped provide access to quality healthcare for 46.5 million people around...

New AI Transforms Radiology with Speed, …

A first-of-its-kind generative AI system, developed in-house at Northwestern Medicine, is revolutionizing radiology - boosting productivity, identifying life-threatening conditions in milliseconds and offering a breakthrough solution to the global radiologist...

Scientists Argue for More FDA Oversight …

An agile, transparent, and ethics-driven oversight system is needed for the U.S. Food and Drug Administration (FDA) to balance innovation with patient safety when it comes to artificial intelligence-driven medical...

New Research Finds Specific Learning Str…

If data used to train artificial intelligence models for medical applications, such as hospitals across the Greater Toronto Area, differs from the real-world data, it could lead to patient harm...

Giving Doctors an AI-Powered Head Start …

Detection of melanoma and a range of other skin diseases will be faster and more accurate with a new artificial intelligence (AI) powered tool that analyses multiple imaging types simultaneously...

AI Agents for Oncology

Clinical decision-making in oncology is challenging and requires the analysis of various data types - from medical imaging and genetic information to patient records and treatment guidelines. To effectively support...

Patients say "Yes..ish" to the…

As artificial intelligence (AI) continues to be integrated in healthcare, a new multinational study involving Aarhus University sheds light on how dental patients really feel about its growing role in...

Brains vs. Bytes: Study Compares Diagnos…

A University of Maine study compared how well artificial intelligence (AI) models and human clinicians handled complex or sensitive medical cases. The study published in the Journal of Health Organization...

'AI Scientist' Suggests Combin…

An 'AI scientist', working in collaboration with human scientists, has found that combinations of cheap and safe drugs - used to treat conditions such as high cholesterol and alcohol dependence...

Start-ups in the Spotlight at MEDICA 202…

17 - 20 November 2025, Düsseldorf, Germany. MEDICA, the leading international trade fair and platform for healthcare innovations, will once again confirm its position as the world's number one hotspot for...