New Video Test for Parkinson's Uses AI to Track How the Disease is Progressing

A video-processing technique developed at the University of Florida that uses artificial intelligence will help neurologists better track the progression of Parkinson's disease in patients, ultimately enhancing their care and quality of life.

The system, developed by Diego Guarin, Ph.D., an assistant professor of applied physiology and kinesiology in the UF College of Health and Human Performance, applies machine learning to analyze video recordings of patients performing the finger-tapping test, a standard test for Parkinson's disease that involves quickly tapping the thumb and index finger 10 times.

"By studying these videos, we could detect even the smallest alterations in hand movements that are characteristic of Parkinson's disease but might be difficult for clinicians to visually identify," said Guarin, who is affiliated with the Norman Fixel Institute for Neurological Diseases at UF Health. "The beauty of this technology is that a patient can record themselves performing the test, and the software analyzes it and informs the clinician how the patient is moving so the clinician can make decisions."

Parkinson's disease is a brain disorder that affects movement and can result in slowness of movement, tremors, stiffness, and difficulty with balance and coordination. Symptoms usually begin gradually and worsen over time. There is not a specific lab or imaging test that can diagnose Parkinson's disease, but a series of exercises and maneuvers performed by the patient helps clinicians identify and evaluate the severity of the disorder.

The rating scale most used to follow the course of Parkinson's disease is the Movement Disorder Society-Unified Parkinson's Disease Rating Scale. Guarin explained that, despite its reliability, the rating is restricted to a 5-point scale, which limits its ability to track subtle changes in progression and is prone to subjective interpretations.

The research team, which included UF neurologists Joshua Wong, M.D.; Nicolaus McFarland, M.D., Ph.D.; and Adolfo Ramirez-Zamora, M.D., created a more objective way to quantify motor symptoms in Parkinson’s patients by using machine learning algorithms to analyze videos and capture nuanced changes in the disease over time.

"We found that we can observe the same features that the clinicians are trying to see by using a camera and a computer," Guarin said. "With help from AI, the same examination is made easier and less time-consuming for everyone involved."

Guarin said the automated system has also revealed previously unnoticed details about movement using precise data collected by the camera, like how quickly the patient opens or closes the finger during movement and how much the movement properties change during every tap.  

"We've seen that, with Parkinson's disease, the opening movement is delayed, compared to the same movement in individuals that are healthy," Guarin said. "This is new information that is almost impossible to measure without the video and computer, telling us the technology can help to better characterize how Parkinson’s disease affects movement and provide new markers to help evaluate the effectiveness of therapies."

To perfect the system, which Guarin originally designed to analyze facial features for conditions other than Parkinson's disease, the team tapped into UF's HiPerGator - one of the world's largest AI supercomputers - to train some of its models.

"HiPerGator enabled us to develop a machine learning model that simplifies the video data into a movement score," Guarin explained. "We used HiPerGator to train, test, and refine different models with large amounts of video data, and now those models can run on a smartphone."

Michael S. Okun, M.D., the director of the Norman Fixel Institute and medical advisor for the Parkinson’s Foundation, said the automated video-based assessments could be a "game changer" for clinical trials and care.

"The finger-tapping test is one of the most critical elements used for diagnosis and for measuring disease progression in Parkinson's disease," Okun said. "Today, it takes an expert to interpret the results, but what is transformative is how Diego and three Parkinson’s neurologists at the Fixel Institute were able to use AI to objectify disease progression."

In addition to placing this technology in the hands of neurologists and other care providers, Guarin is working with UFIT to develop it into an app for mobile devices, allowing individuals to assess their disease over time at home.

Guarin DL, Wong JK, McFarland NR, Ramirez-Zamora A.
Characterizing Disease Progression in Parkinson's Disease from Videos of the Finger Tapping Test.
IEEE Trans Neural Syst Rehabil Eng. 2024;32:2293-2301. doi: 10.1109/TNSRE.2024.3416446

Most Popular Now

Stepping Hill Hospital Announced as SPAR…

Stepping Hill Hospital, part of Stockport NHS Foundation Trust, has replaced its bedside units with state-of-the art devices running a full range of information, engagement, communications and productivity apps, to...

DMEA 2025: Digital Health Worldwide in B…

8 - 10 April 2025, Berlin, Germany. From the AI Act, to the potential of the European Health Data Space, to the power of patient data in Scandinavia - DMEA 2025...

Is AI in Medicine Playing Fair?

As artificial intelligence (AI) rapidly integrates into health care, a new study by researchers at the Icahn School of Medicine at Mount Sinai reveals that all generative AI models may...

New System for the Early Detection of Au…

A team from the Human-Tech Institute-Universitat Politècnica de València has developed a new system for the early detection of Autism Spectrum Disorder (ASD) using virtual reality and artificial intelligence. The...

Generative AI's Diagnostic Capabili…

The use of generative AI for diagnostics has attracted attention in the medical field and many research papers have been published on this topic. However, because the evaluation criteria were...

Diagnoses and Treatment Recommendations …

A new study led by Prof. Dan Zeltzer, a digital health expert from the Berglas School of Economics at Tel Aviv University, compared the quality of diagnostic and treatment recommendations...

AI Tool can Track Effectiveness of Multi…

A new artificial intelligence (AI) tool that can help interpret and assess how well treatments are working for patients with multiple sclerosis (MS) has been developed by UCL researchers. AI uses...

Surrey and Sussex Healthcare NHS Trust g…

Surrey and Sussex Healthcare NHS Trust has marked an important milestone in connecting busy radiologists across large parts of South East England, following the successful go live of Sectra's enterprise...

Dr Jason Broch Joins the Highland Market…

The Highland Marketing advisory board has welcomed a new member - Dr Jason Broch, a GP and director with a strong track record in the NHS and IT-enabled transformation. Dr Broch...

DMEA 2025 Ends with Record Attendance an…

8 - 10 April 2025, Berlin, Germany. DMEA 2025 came to a successful close with record attendance and an impressive program. 20,500 participants attended Europe's leading digital health event over the...

Multi-Resistance in Bacteria Predicted b…

An AI model trained on large amounts of genetic data can predict whether bacteria will become antibiotic-resistant. The new study shows that antibiotic resistance is more easily transmitted between genetically...

AI-Driven Smart Devices to Transform Hea…

AI-powered, internet-connected medical devices have the potential to revolutionise healthcare by enabling early disease detection, real-time patient monitoring, and personalised treatments, a new study suggests. They are already saving lives...