New Video Test for Parkinson's Uses AI to Track How the Disease is Progressing

A video-processing technique developed at the University of Florida that uses artificial intelligence will help neurologists better track the progression of Parkinson's disease in patients, ultimately enhancing their care and quality of life.

The system, developed by Diego Guarin, Ph.D., an assistant professor of applied physiology and kinesiology in the UF College of Health and Human Performance, applies machine learning to analyze video recordings of patients performing the finger-tapping test, a standard test for Parkinson's disease that involves quickly tapping the thumb and index finger 10 times.

"By studying these videos, we could detect even the smallest alterations in hand movements that are characteristic of Parkinson's disease but might be difficult for clinicians to visually identify," said Guarin, who is affiliated with the Norman Fixel Institute for Neurological Diseases at UF Health. "The beauty of this technology is that a patient can record themselves performing the test, and the software analyzes it and informs the clinician how the patient is moving so the clinician can make decisions."

Parkinson's disease is a brain disorder that affects movement and can result in slowness of movement, tremors, stiffness, and difficulty with balance and coordination. Symptoms usually begin gradually and worsen over time. There is not a specific lab or imaging test that can diagnose Parkinson's disease, but a series of exercises and maneuvers performed by the patient helps clinicians identify and evaluate the severity of the disorder.

The rating scale most used to follow the course of Parkinson's disease is the Movement Disorder Society-Unified Parkinson's Disease Rating Scale. Guarin explained that, despite its reliability, the rating is restricted to a 5-point scale, which limits its ability to track subtle changes in progression and is prone to subjective interpretations.

The research team, which included UF neurologists Joshua Wong, M.D.; Nicolaus McFarland, M.D., Ph.D.; and Adolfo Ramirez-Zamora, M.D., created a more objective way to quantify motor symptoms in Parkinson’s patients by using machine learning algorithms to analyze videos and capture nuanced changes in the disease over time.

"We found that we can observe the same features that the clinicians are trying to see by using a camera and a computer," Guarin said. "With help from AI, the same examination is made easier and less time-consuming for everyone involved."

Guarin said the automated system has also revealed previously unnoticed details about movement using precise data collected by the camera, like how quickly the patient opens or closes the finger during movement and how much the movement properties change during every tap.  

"We've seen that, with Parkinson's disease, the opening movement is delayed, compared to the same movement in individuals that are healthy," Guarin said. "This is new information that is almost impossible to measure without the video and computer, telling us the technology can help to better characterize how Parkinson’s disease affects movement and provide new markers to help evaluate the effectiveness of therapies."

To perfect the system, which Guarin originally designed to analyze facial features for conditions other than Parkinson's disease, the team tapped into UF's HiPerGator - one of the world's largest AI supercomputers - to train some of its models.

"HiPerGator enabled us to develop a machine learning model that simplifies the video data into a movement score," Guarin explained. "We used HiPerGator to train, test, and refine different models with large amounts of video data, and now those models can run on a smartphone."

Michael S. Okun, M.D., the director of the Norman Fixel Institute and medical advisor for the Parkinson’s Foundation, said the automated video-based assessments could be a "game changer" for clinical trials and care.

"The finger-tapping test is one of the most critical elements used for diagnosis and for measuring disease progression in Parkinson's disease," Okun said. "Today, it takes an expert to interpret the results, but what is transformative is how Diego and three Parkinson’s neurologists at the Fixel Institute were able to use AI to objectify disease progression."

In addition to placing this technology in the hands of neurologists and other care providers, Guarin is working with UFIT to develop it into an app for mobile devices, allowing individuals to assess their disease over time at home.

Guarin DL, Wong JK, McFarland NR, Ramirez-Zamora A.
Characterizing Disease Progression in Parkinson's Disease from Videos of the Finger Tapping Test.
IEEE Trans Neural Syst Rehabil Eng. 2024;32:2293-2301. doi: 10.1109/TNSRE.2024.3416446

Most Popular Now

AI-Powered CRISPR could Lead to Faster G…

Stanford Medicine researchers have developed an artificial intelligence (AI) tool to help scientists better plan gene-editing experiments. The technology, CRISPR-GPT, acts as a gene-editing “copilot” supported by AI to help...

Groundbreaking AI Aims to Speed Lifesavi…

To solve a problem, we have to see it clearly. Whether it’s an infection by a novel virus or memory-stealing plaques forming in the brains of Alzheimer’s patients, visualizing disease processes...

AI Spots Hidden Signs of Depression in S…

Depression is one of the most common mental health challenges, but its early signs are often overlooked. It is often linked to reduced facial expressivity. However, whether mild depression or...

AI Tools Help Predict Severe Asthma Risk…

Mayo Clinic researchers have developed artificial intelligence (AI) tools that help identify which children with asthma face the highest risk of serious asthma exacerbation and acute respiratory infections. The study...

AI Model Forecasts Disease Risk Decades …

Imagine a future where your medical history could help predict what health conditions you might face in the next two decades. Researchers have developed a generative AI model that uses...

AI Model Indicates Four out of Ten Breas…

A project at Lund University in Sweden has trained an AI model to identify breast cancer patients who could be spared from axillary surgery. The model analyses previously unutilised information...

ChatGPT 4o Therapeutic Chatbot 'Ama…

One of the first randomized controlled trials assessing the effectiveness of a large language model (LLM) chatbot 'Amanda' for relationship support shows that a single session of chatbot therapy...

AI Distinguishes Glioblastoma from Look-…

A Harvard Medical School–led research team has developed an AI tool that can reliably tell apart two look-alike cancers found in the brain but with different origins, behaviors, and treatments. The...

Smart Device Uses AI and Bioelectronics …

As a wound heals, it goes through several stages: clotting to stop bleeding, immune system response, scabbing, and scarring. A wearable device called "a-Heal," designed by engineers at the University...

Overcoming the AI Applicability Crisis a…

Opinion Article by Harry Lykostratis, Chief Executive, Open Medical. The government’s 10 Year Health Plan makes a lot of the potential of AI-software to support clinical decision making, improve productivity, and...

Dartford and Gravesham Implements Clinis…

Dartford and Gravesham NHS Trust has taken a significant step towards a more digital future by rolling out electronic test ordering using Clinisys ICE. The trust deployed the order communications...