AI Speeds Up Heart Scans, Saving Doctors' Time

Researchers have developed a groundbreaking method for analysing heart MRI scans with the help of artificial intelligence (AI), which could save valuable NHS time and resources, as well as improve care for patients.

The teams from the Universities of East Anglia (UEA), Sheffield and Leeds created an intelligent computer model that utilises AI to examine heart images from MRI scans in a specific view known as the four-chamber plane.

Lead researcher Dr Pankaj Garg, of the University of East Anglia's Norwich Medical School and a consultant cardiologist at the Norfolk and Norwich University Hospital, heads up a team of researchers who have pioneered innovative and revolutionary 4D MRI imaging technology. This is paving the way for faster, non-invasive and more accurate diagnosis of heart failure and other cardiac conditions.

Dr Garg said: "The AI model precisely determined the size and function of the heart's chambers and demonstrated outcomes comparable to those acquired by doctors manually but much quicker.

"Unlike a standard manual MRI analysis, which can take up to 45 minutes or more, the new AI model takes just a few seconds.

"This automated technique could offer speedy and dependable evaluations of heart health, with the potential to enhance patient care."

The retrospective observational study consisted of data from 814 patients from Sheffield Teaching Hospitals NHS Foundation Trust and Leeds Teaching Hospitals NHS Trust, which was then used to train the AI model.

To make sure the model's results were accurate, scans and data from another 101 patients from the Norfolk and Norwich University Hospitals NHS Foundation Trust were then used for testing.

While other studies have investigated the use of AI in interpreting MRI scans, this latest AI model was trained using data from multiple hospitals and different types of scanners, as well as conducting the testing on a diverse group of patients from a different hospital. In addition, this AI model provides a complete analysis of the entire heart using a view that shows all four chambers, while most earlier studies focused on a view that only looks at the heart's two main chambers.

PhD student Dr Hosamadin Assadi, of UEA’s Norwich Medical School, said: "Automating the process of assessing heart function and structure will save time and resources and ensure consistent results for doctors.

"This innovation could lead to more efficient diagnoses, better treatment decisions, and ultimately, improved outcomes for patients with heart conditions.

"Moreover, the potential of AI to predict mortality based on heart measurements highlights its potential to revolutionise cardiac care and improve patient prognosis."

The researchers say future studies should test the model using larger groups of patients from different hospitals, with various types of MRI scanners, and including other common diseases seen in medical practice to see if it works well in a broader range of real-world situations.

Other recent research from the teams at UEA, Leeds and Sheffield has refined the method of using heart MRI scans for female patients, particularly for those with early or borderline heart disease, which meant that 16.5pc more females were able to be diagnosed.

The research was a collaboration between the University of East Anglia, the University of Leeds, the University of Sheffield, Leiden University Medical Centre, the Norfolk and Norwich University Hospitals NHS Foundation Trust, Sheffield Teaching Hospitals NHS Foundation Trust and Leeds Teaching Hospitals NHS Trust.

The study was supported by funding for Dr Pankaj Garg from the Wellcome Trust Clinical Research Career Development Fellowship.

Assadi H, Alabed S, Li R, Matthews G, Karunasaagarar K, Kasmai B, Nair S, Mehmood Z, Grafton-Clarke C, Swoboda PP, Swift AJ, Greenwood JP, Vassiliou VS, Plein S, van der Geest RJ, Garg P.
Development and validation of AI-derived segmentation of four-chamber cine cardiac magnetic resonance.
Eur Radiol Exp. 2024 Jul 12;8(1):77. doi: 10.1186/s41747-024-00477-7

Most Popular Now

AI Distinguishes Glioblastoma from Look-…

A Harvard Medical School–led research team has developed an AI tool that can reliably tell apart two look-alike cancers found in the brain but with different origins, behaviors, and treatments. The...

AI Body Composition Measurements can Pre…

Adiposity - or the accumulation of excess fat in the body - is a known driver of cardiometabolic diseases such as heart disease, stroke, type 2 diabetes, and kidney disease...

AI can Strengthen Pandemic Preparedness

How to identify the next dangerous virus before it spreads among people is the central question in a new Comment in The Lancet Infectious Diseases. In it, researchers discuss how...

'Future-Guided' AI Improves Se…

In the world around us, many things exist in the context of time: a bird’s path through the sky is understood as different positions over a period of time, and...

New AI Tool Scans Social Media for Hidde…

A new artificial intelligence tool can scan social media data to discover adverse events associated with consumer health products, according to a study published September 30th in the open-access journal...

Study Finds One-Year Change on CT Scans …

Researchers at National Jewish Health have shown that subtle increases in lung scarring, detected by an artificial intelligence-based tool on CT scans taken one year apart, are associated with disease...

Yousif's Story with Sectra and The …

Embarking on healthcare technology career after leaving his home as a refugee during his teenage years, Yousif is passionate about making a difference. He reflects on an apprenticeship in which...

New AI Tools Help Scientists Track How D…

Artificial intelligence (AI) can solve problems at remarkable speed, but it’s the people developing the algorithms who are truly driving discovery. At The University of Texas at Arlington, data scientists...

AI Tool Offers Deep Insight into the Imm…

Researchers explore the human immune system by looking at the active components, namely the various genes and cells involved. But there is a broad range of these, and observations necessarily...

New Antibiotic Targets IBD - and AI Pred…

Researchers at McMaster University and the Massachusetts Institute of Technology (MIT) have made two scientific breakthroughs at once: they not only discovered a brand-new antibiotic that targets inflammatory bowel diseases...

Highland to Help Companies Seize 'N…

Health tech growth partner Highland has today revealed its new identity - reflecting a sharper focus as it helps health tech companies to find market opportunities, convince target audiences, and...