AI Model to Improve Patient Response to Cancer Therapy

A new artificial intelligence (AI) tool that can help to select the most suitable treatment for cancer patients has been developed by researchers at The Australian National University (ANU).

DeepPT, developed in collaboration with scientists at the National Cancer Institute in America and pharmaceutical company Pangea Biomed, works by predicting a patient's messenger RNA (mRNA) profile. This mRNA - essential for protein production - is also the key molecular information for personalised cancer medicine.

According to lead author Dr Danh-Tai Hoang from ANU, when combined with a second tool called ENLIGHT, DeepPT was found to successfully predict a patient’s response to cancer therapies across multiple types of cancer.

"We know that selecting a suitable treatment for cancer patients can be integral to patient outcomes," Dr Hoang said.

"DeepPT was trained on over 5,500 patients across 16 prevalent cancer types, including breast, lung, head and neck, cervical and pancreatic cancers.

"We saw an improvement in patient response rate from 33.3 per cent without using our model to 46.5 per cent with using our model."

DeepPT builds on previous work by the same ANU researchers to develop a tool to help classify brain tumours.

Both AI tools draw on microscopic pictures of patient tissue called histopathology images, also providing another key benefit for patients.

"This cuts down on delays in processing complex molecular data, which can take weeks," Dr Hoang said.

"Any kind of delay obviously poses a real challenge when dealing with patients with high-grade tumours who might require immediate treatment.

"In contrast, histopathology images are routinely available, cost-effective and timely."

The study has been published in Nature Cancer.

Hoang DT, Dinstag G, Shulman ED, Hermida LC, Ben-Zvi DS, Elis E, Caley K, Sammut SJ, Sinha S, Sinha N, Dampier CH, Stossel C, Patil T, Rajan A, Lassoued W, Strauss J, Bailey S, Allen C, Redman J, Beker T, Jiang P, Golan T, Wilkinson S, Sowalsky AG, Pine SR, Caldas C, Gulley JL, Aldape K, Aharonov R, Stone EA, Ruppin E.
A deep-learning framework to predict cancer treatment response from histopathology images through imputed transcriptomics.
Nat Cancer. 2024 Jul 3. doi: 10.1038/s43018-024-00793-2

Most Popular Now

AI Distinguishes Glioblastoma from Look-…

A Harvard Medical School–led research team has developed an AI tool that can reliably tell apart two look-alike cancers found in the brain but with different origins, behaviors, and treatments. The...

AI Body Composition Measurements can Pre…

Adiposity - or the accumulation of excess fat in the body - is a known driver of cardiometabolic diseases such as heart disease, stroke, type 2 diabetes, and kidney disease...

AI can Strengthen Pandemic Preparedness

How to identify the next dangerous virus before it spreads among people is the central question in a new Comment in The Lancet Infectious Diseases. In it, researchers discuss how...

'Future-Guided' AI Improves Se…

In the world around us, many things exist in the context of time: a bird’s path through the sky is understood as different positions over a period of time, and...

New AI Tool Scans Social Media for Hidde…

A new artificial intelligence tool can scan social media data to discover adverse events associated with consumer health products, according to a study published September 30th in the open-access journal...