Can AI Tell you if You Have Osteoporosis?

Osteoporosis is so difficult to detect in early stage it’s called the "silent disease." What if artificial intelligence could help predict a patient’s chances of having the bone-loss disease before ever stepping into a doctor's office?

Tulane University researchers made progress toward that vision by developing a new deep learning algorithm that outperformed existing computer-based osteoporosis risk prediction methods, potentially leading to earlier diagnoses and better outcomes for patients with osteoporosis risk.

Their results were recently published in Frontiers in Artificial Intelligence.

Deep learning models have gained notice for their ability to mimic human neural networks and find trends within large datasets without being specifically programmed to do so. Researchers tested the deep neural network (DNN) model against four conventional machine learning algorithms and a traditional regression model, using data from over 8,000 participants aged 40 and older in the Louisiana Osteoporosis Study. The DNN achieved the best overall predictive performance, measured by scoring each model’s ability to identify true positives and avoid mistakes.

"The earlier osteoporosis risk is detected, the more time a patient has for preventative measures," said lead author Chuan Qiu, a research assistant professor at the Tulane School of Medicine Center for Biomedical Informatics and Genomics. "We were pleased to see our DNN model outperform other models in accurately predicting the risk of osteoporosis in an aging population."

In testing the algorithms using a large sample size of real-world health data, the researchers were also able to identify the 10 most important factors for predicting osteoporosis risk: weight, age, gender, grip strength, height, beer drinking, diastolic pressure, alcohol drinking, years of smoking, and income level.

Notably, the simplified DNN model using these top 10 risk factors performed nearly as well as the full model which included all risk factors.

While Qiu admitted that there is much more work to be done before an AI platform can be used by the public to predict an individual’s risk of osteoporosis, he said identifying the benefits of the deep learning model was a step in that direction.

"Our final aim is to allow people to enter their information and receive highly accurate osteoporosis risk scores to empower them to seek treatment to strengthen their bones and reduce any further damage," Qiu said.

Qiu C, Su K, Luo Z, Tian Q, Zhao L, Wu L, Deng H, Shen H.
Developing and comparing deep learning and machine learning algorithms for osteoporosis risk prediction.
Front Artif Intell. 2024 Jun 11;7:1355287. doi: 10.3389/frai.2024.1355287

Most Popular Now

AI Catches One-Third of Interval Breast …

An AI algorithm for breast cancer screening has potential to enhance the performance of digital breast tomosynthesis (DBT), reducing interval cancers by up to one-third, according to a study published...

Great plan: Now We need to Get Real abou…

The government's big plan for the 10 Year Health Plan for the NHS laid out a big role for delivery. However, the Highland Marketing advisory board felt the missing implementation...

Researchers Create 'Virtual Scienti…

There may be a new artificial intelligence-driven tool to turbocharge scientific discovery: virtual labs. Modeled after a well-established Stanford School of Medicine research group, the virtual lab is complete with an...

From WebMD to AI Chatbots: How Innovatio…

A new research article published in the Journal of Participatory Medicine unveils how successive waves of digital technology innovation have empowered patients, fostering a more collaborative and responsive health care...

New AI Tool Accelerates mRNA-Based Treat…

A new artificial intelligence (AI) model can improve the process of drug and vaccine discovery by predicting how efficiently specific mRNA sequences will produce proteins, both generally and in various...

Can Amazon Alexa or Google Home Help Det…

Computer scientists at the University of Rochester have developed an AI-powered, speech-based screening tool that can help people assess whether they are showing signs of Parkinson’s disease, the fastest growing...

AI also Assesses Dutch Mammograms Better…

AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by...

RSNA AI Challenge Models can Independent…

Algorithms submitted for an AI Challenge hosted by the Radiological Society of North America (RSNA) have shown excellent performance for detecting breast cancers on mammography images, increasing screening sensitivity while...

AI could Help Emergency Rooms Predict Ad…

Artificial intelligence (AI) can help emergency department (ED) teams better anticipate which patients will need hospital admission, hours earlier than is currently possible, according to a multi-hospital study by the...

Head-to-Head Against AI, Pharmacy Studen…

Students pursuing a Doctor of Pharmacy degree routinely take - and pass - rigorous exams to prove competency in several areas. Can ChatGPT accurately answer the same questions? A new...

NHS Active 10 Walking Tracker Users are …

Users of the NHS Active 10 app, designed to encourage people to become more active, immediately increased their amount of brisk and non-brisk walking upon using the app, according to...

The Human Touch of Doctors will Still be…

AI-based medicine will revolutionise care including for Alzheimer’s and diabetes, predicts a technology expert, but it must be accessible to all patients. Healing with Artificial Intelligence, written by technology expert Daniele...