Can AI Tell you if You Have Osteoporosis?

Osteoporosis is so difficult to detect in early stage it’s called the "silent disease." What if artificial intelligence could help predict a patient’s chances of having the bone-loss disease before ever stepping into a doctor's office?

Tulane University researchers made progress toward that vision by developing a new deep learning algorithm that outperformed existing computer-based osteoporosis risk prediction methods, potentially leading to earlier diagnoses and better outcomes for patients with osteoporosis risk.

Their results were recently published in Frontiers in Artificial Intelligence.

Deep learning models have gained notice for their ability to mimic human neural networks and find trends within large datasets without being specifically programmed to do so. Researchers tested the deep neural network (DNN) model against four conventional machine learning algorithms and a traditional regression model, using data from over 8,000 participants aged 40 and older in the Louisiana Osteoporosis Study. The DNN achieved the best overall predictive performance, measured by scoring each model’s ability to identify true positives and avoid mistakes.

"The earlier osteoporosis risk is detected, the more time a patient has for preventative measures," said lead author Chuan Qiu, a research assistant professor at the Tulane School of Medicine Center for Biomedical Informatics and Genomics. "We were pleased to see our DNN model outperform other models in accurately predicting the risk of osteoporosis in an aging population."

In testing the algorithms using a large sample size of real-world health data, the researchers were also able to identify the 10 most important factors for predicting osteoporosis risk: weight, age, gender, grip strength, height, beer drinking, diastolic pressure, alcohol drinking, years of smoking, and income level.

Notably, the simplified DNN model using these top 10 risk factors performed nearly as well as the full model which included all risk factors.

While Qiu admitted that there is much more work to be done before an AI platform can be used by the public to predict an individual’s risk of osteoporosis, he said identifying the benefits of the deep learning model was a step in that direction.

"Our final aim is to allow people to enter their information and receive highly accurate osteoporosis risk scores to empower them to seek treatment to strengthen their bones and reduce any further damage," Qiu said.

Qiu C, Su K, Luo Z, Tian Q, Zhao L, Wu L, Deng H, Shen H.
Developing and comparing deep learning and machine learning algorithms for osteoporosis risk prediction.
Front Artif Intell. 2024 Jun 11;7:1355287. doi: 10.3389/frai.2024.1355287

Most Popular Now

AI also Assesses Dutch Mammograms Better…

AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by...

RSNA AI Challenge Models can Independent…

Algorithms submitted for an AI Challenge hosted by the Radiological Society of North America (RSNA) have shown excellent performance for detecting breast cancers on mammography images, increasing screening sensitivity while...

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

Routine AI Assistance may Lead to Loss o…

The introduction of artificial intelligence (AI) to assist colonoscopies is linked to a reduction in the ability of endoscopists (health professionals who perform colonoscopies) to detect precancerous growths (adenomas) in...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...