Meet CARMEN, a Robot that Helps People with Mild Cognitive Impairment

Meet CARMEN, short for Cognitively Assistive Robot for Motivation and Neurorehabilitation - a small, tabletop robot designed to help people with mild cognitive impairment (MCI) learn skills to improve memory, attention, and executive functioning at home.

Unlike other robots in this space, CARMEN was developed by the research team at the University of California San Diego in collaboration with clinicians, people with MCI, and their care partners. To the best of the researchers' knowledge, CARMEN is also the only robot that teaches compensatory cognitive strategies to help improve memory and executive function.

"We wanted to make sure we were providing meaningful and practical inventions," said Laurel Riek, a professor of computer science and emergency medicine at UC San Diego and the work's senior author.

MCI is an in-between stage between typical aging and dementia. It affects various areas of cognitive functioning, including memory, attention, and executive functioning. About 20% of individuals over 65 have the condition, with up to 15% transitioning to dementia each year. Existing pharmacological treatments have not been able to slow or prevent this evolution, but behavioral treatments can help.

Researchers programmed CARMEN to deliver a series of simple cognitive training exercises. For example, the robot can teach participants to create routine places to leave important objects, such as keys; or learn note taking strategies to remember important things. CARMEN does this through interactive games and activities.

The research team designed CARMEN with a clear set of criteria in mind. It is important that people can use the robot independently, without clinician or researcher supervision. For this reason, CARMEN had to be plug and play, without many moving parts that require maintenance. The robot also has to be able to function with limited access to the internet, as many people do not have access to reliable connectivity. CARMEN needs to be able to function over a long period of time. The robot also has to be able to communicate clearly with users; express compassion and empathy for a person’s situation; and provide breaks after challenging tasks to help sustain engagement.

Researchers deployed CARMEN for a week in the homes of several people with MCI, who then engaged in multiple tasks with the robot, such as identifying routine places to leave household items so they don’t get lost, and placing tasks on a calendar so they won’t be forgotten. Researchers also deployed the robot in the homes of several clinicians with experience working with people with MCI. Both groups of participants completed questionnaires and interviews before and after the week-long deployments.

After the week with CARMEN, participants with MCI reported trying strategies and behaviors that they previously had written off as impossible. All participants reported that using the robot was easy. Two out of the three participants found the activities easy to understand, but one of the users struggled. All said they wanted more interaction with the robot.

"We found that CARMEN gave participants confidence to use cognitive strategies in their everyday life, and participants saw opportunities for CARMEN to exhibit greater levels of autonomy or be used for other applications," the researchers write.

The research team presented their findings at the ACM/IEEE Human Robot Interaction (HRI) conference in March 2024, where they received a best paper award nomination.

Next steps include deploying the robot in a larger number of homes.

Researchers also plan to give CARMEN the ability to have conversations with users, with an emphasis on preserving privacy when these conversations happen. This is both an accessibility issue (as some users might not have the fine motor skills necessary to interact with CARMEN's touch screen), as well as because most people expect to be able to have conversations with systems in their homes. At the same time, researchers want to limit how much information CARMEN can give users. "We want to be mindful that the user still needs to do the bulk of the work, so the robot can only assist and not give too many hints," Riek said.

Researchers are also exploring how CARMEN could assist users with other conditions, such as ADHD.

The UC San Diego team built CARMEN based on the FLEXI robot from the University of Washington. But they made substantial changes to its hardware, and wrote all its software from scratch. Researchers used ROS for the robot's operating system.

Many elements of the project are available at https://github.com/UCSD-RHC-Lab/CARMEN

Anya Bouzida, Alyssa Kubota, Dagoberto Cruz-Sandoval, Elizabeth W. Twamley, Laurel D Riek.
CARMEN: A Cognitively Assistive Robot for Personalized Neurorehabilitation at Home.
In Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI '24). doi: 10.1145/3610977.3634971

Most Popular Now

Giving Doctors an AI-Powered Head Start …

Detection of melanoma and a range of other skin diseases will be faster and more accurate with a new artificial intelligence (AI) powered tool that analyses multiple imaging types simultaneously...

AI Agents for Oncology

Clinical decision-making in oncology is challenging and requires the analysis of various data types - from medical imaging and genetic information to patient records and treatment guidelines. To effectively support...

AI Medical Receptionist Modernizing Doct…

A virtual medical receptionist named "Cassie," developed through research at Texas A&M University, is transforming the way patients interact with health care providers. Cassie is a digital-human assistant created by Humanate...

Using Data and AI to Create Better Healt…

Academic medical centers could transform patient care by adopting principles from learning health systems principles, according to researchers from Weill Cornell Medicine and the University of California, San Diego. In...

AI Tool Set to Transform Characterisatio…

A multinational team of researchers, co-led by the Garvan Institute of Medical Research, has developed and tested a new AI tool to better characterise the diversity of individual cells within...

AI Detects Hidden Heart Disease Using Ex…

Mass General Brigham researchers have developed a new AI tool in collaboration with the United States Department of Veterans Affairs (VA) to probe through previously collected CT scans and identify...

Human-AI Collectives Make the Most Accur…

Diagnostic errors are among the most serious problems in everyday medical practice. AI systems - especially large language models (LLMs) like ChatGPT-4, Gemini, or Claude 3 - offer new ways...

Northern Ireland Completes Nationwide Ro…

Go-lives at Western and Southern health and social care trusts mean every pathology service is using the same laboratory information management system; improving efficiency and quality. An ambitious technology project to...

Highland Marketing Announced as Official…

Highland Marketing has been named, for the second year running, the official communications partner for HETT Show 2025, the UK's leading digital health conference and exhibition. Taking place 7-8 October...

MHP-Net: A Revolutionary AI Model for Ac…

Liver cancer is the sixth most common cancer globally and a leading cause of cancer-related deaths. Accurate segmentation of liver tumors is a crucial step for the management of the...

Groundbreaking TACIT Algorithm Offers Ne…

Researchers at VCU Massey Comprehensive Cancer Center have developed a novel algorithm that could provide a revolutionary tool for determining the best options for patients - both in the treatment...

The Many Ways that AI Enters Rheumatolog…

High-resolution computed tomography (HRCT) is the standard to diagnose and assess progression in interstitial lung disease (ILD), a key feature in systemic sclerosis (SSc). But AI-assisted interpretation has the potential...