We may Soon be Able to Detect Cancer with AI

A new paper in Biology Methods & Protocols, published by Oxford University Press, indicates that it may soon be possible for doctors to use artificial intelligence (AI) to detect and diagnose cancer in patients, allowing for earlier treatment. Cancer remains one of the most challenging human diseases, with over 19 million cases and 10 million deaths annually. The evolutionary nature of cancer makes it difficult to treat late-stage tumours.

Genetic information is encoded in DNA by patterns of the four bases - denoted by A, T, G and C - that make up its structure. Environmental changes outside the cell can cause some DNA bases to be modified by adding a methyl group. This process is called "DNA methylation." Each individual cell possesses millions of these DNA methylation marks. Researchers have observed changes to these marks in early cancer development; they could assist in early diagnosis of cancer. It’s possible to examine which bases in DNA are methylated in cancers and to what extent, compared to healthy tissue. Identifying the specific DNA methylation signatures indicative of different cancer types is akin to searching for a needle in a haystack. This is where the researchers involved in this study believe that AI can help.

Investigators from Cambridge University and Imperial College London trained an AI mode, using a combination of machine and deep learning, to look at the DNA methylation patterns and identify 13 different cancer types (including breast, liver, lung, and prostate cancers) from non-cancerous tissue with 98.2% accuracy. This model relies on tissue samples (not DNA fragments in blood) and would need additional training and testing on a more diverse collection of biopsy samples to be ready for clinical use. The researchers here believe that an important aspect of this study was the use of an explainable and interpretable core AI model, which provided insights into the reasoning behind its predictions. The researchers explored the inner workings of their model and showed that the model reinforces and enhances understanding of the underlying processes contributing to cancer.

Identifying these unusual methylation patterns (potentially from biopsies) would allow health care providers to detect cancer early. This could potentially improve patient outcomes dramatically, as most cancers are treatable or curable if detected early enough.

"Computational methods such as this model, through better training on more varied data and rigorous testing in the clinic, will eventually provide AI models that can help doctors with early detection and screening of cancers," said the paper's lead author, Shamith Samarajiwa. "This will provide better patient outcomes."

Newsham I, Sendera M, Jammula SG, Samarajiwa SA.
Early detection and diagnosis of cancer with interpretable machine learning to uncover cancer-specific DNA methylation patterns.
Biol Methods Protoc. 2024 Jun 20;9(1):bpae028. doi: 10.1093/biomethods/bpae028

Most Popular Now

AI also Assesses Dutch Mammograms Better…

AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by...

RSNA AI Challenge Models can Independent…

Algorithms submitted for an AI Challenge hosted by the Radiological Society of North America (RSNA) have shown excellent performance for detecting breast cancers on mammography images, increasing screening sensitivity while...

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

Routine AI Assistance may Lead to Loss o…

The introduction of artificial intelligence (AI) to assist colonoscopies is linked to a reduction in the ability of endoscopists (health professionals who perform colonoscopies) to detect precancerous growths (adenomas) in...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...