We may Soon be Able to Detect Cancer with AI

A new paper in Biology Methods & Protocols, published by Oxford University Press, indicates that it may soon be possible for doctors to use artificial intelligence (AI) to detect and diagnose cancer in patients, allowing for earlier treatment. Cancer remains one of the most challenging human diseases, with over 19 million cases and 10 million deaths annually. The evolutionary nature of cancer makes it difficult to treat late-stage tumours.

Genetic information is encoded in DNA by patterns of the four bases - denoted by A, T, G and C - that make up its structure. Environmental changes outside the cell can cause some DNA bases to be modified by adding a methyl group. This process is called "DNA methylation." Each individual cell possesses millions of these DNA methylation marks. Researchers have observed changes to these marks in early cancer development; they could assist in early diagnosis of cancer. It’s possible to examine which bases in DNA are methylated in cancers and to what extent, compared to healthy tissue. Identifying the specific DNA methylation signatures indicative of different cancer types is akin to searching for a needle in a haystack. This is where the researchers involved in this study believe that AI can help.

Investigators from Cambridge University and Imperial College London trained an AI mode, using a combination of machine and deep learning, to look at the DNA methylation patterns and identify 13 different cancer types (including breast, liver, lung, and prostate cancers) from non-cancerous tissue with 98.2% accuracy. This model relies on tissue samples (not DNA fragments in blood) and would need additional training and testing on a more diverse collection of biopsy samples to be ready for clinical use. The researchers here believe that an important aspect of this study was the use of an explainable and interpretable core AI model, which provided insights into the reasoning behind its predictions. The researchers explored the inner workings of their model and showed that the model reinforces and enhances understanding of the underlying processes contributing to cancer.

Identifying these unusual methylation patterns (potentially from biopsies) would allow health care providers to detect cancer early. This could potentially improve patient outcomes dramatically, as most cancers are treatable or curable if detected early enough.

"Computational methods such as this model, through better training on more varied data and rigorous testing in the clinic, will eventually provide AI models that can help doctors with early detection and screening of cancers," said the paper's lead author, Shamith Samarajiwa. "This will provide better patient outcomes."

Newsham I, Sendera M, Jammula SG, Samarajiwa SA.
Early detection and diagnosis of cancer with interpretable machine learning to uncover cancer-specific DNA methylation patterns.
Biol Methods Protoc. 2024 Jun 20;9(1):bpae028. doi: 10.1093/biomethods/bpae028

Most Popular Now

New Computational Model of Real Neurons …

Nearly all the neural networks that power modern artificial intelligence (AI) tools such as ChatGPT are based on a 1960s-era computational model of a living neuron. A new model developed...

Meet CARMEN, a Robot that Helps People w…

Meet CARMEN, short for Cognitively Assistive Robot for Motivation and Neurorehabilitation - a small, tabletop robot designed to help people with mild cognitive impairment (MCI) learn skills to improve memory...

AI Matches Protein Interaction Partners

Proteins are the building blocks of life, involved in virtually every biological process. Understanding how proteins interact with each other is crucial for deciphering the complexities of cellular functions, and...

Mobile Phone Data Helps Track Pathogen S…

A new way to map the spread and evolution of pathogens, and their responses to vaccines and antibiotics, will provide key insights to help predict and prevent future outbreaks. The...

AI Model to Improve Patient Response to …

A new artificial intelligence (AI) tool that can help to select the most suitable treatment for cancer patients has been developed by researchers at The Australian National University (ANU). DeepPT, developed...

Can AI Tell you if You Have Osteoporosis…

Osteoporosis is so difficult to detect in early stage it’s called the "silent disease." What if artificial intelligence could help predict a patient’s chances of having the bone-loss disease before...

Study Reveals Why AI Models that Analyze…

Artificial intelligence (AI) models often play a role in medical diagnoses, especially when it comes to analyzing images such as X-rays. However, studies have found that these models don’t always...

Think You're Funny? ChatGPT might b…

A study comparing jokes by people versus those told by ChatGPT shows that humans need to work on their material. The research team behind the study published on Wednesday, July 3...

Innovative, Highly Accurate AI Model can…

If there is one medical exam that everyone in the world has taken, it's a chest x-ray. Clinicians can use radiographs to tell if someone has tuberculosis, lung cancer, or...

New AI Approach Optimizes Antibody Drugs

Proteins have evolved to excel at everything from contracting muscles to digesting food to recognizing viruses. To engineer better proteins, including antibodies, scientists often iteratively mutate the amino acids -...

AI Speeds Up Heart Scans, Saving Doctors…

Researchers have developed a groundbreaking method for analysing heart MRI scans with the help of artificial intelligence (AI), which could save valuable NHS time and resources, as well as improve...

Young People Believe that AI is a Valuab…

Children and young people are generally positive about artificial intelligence (AI) and think it should be used in modern healthcare, finds the first-of-its-kind survey led by UCL and Great Ormond...