New AI Tool Finds Rare Variants Linked to Heart Disease in 17 Genes

Using an advanced artificial intelligence (AI) tool, researchers at the Icahn School of Medicine at Mount Sinai have identified rare coding variants in 17 genes that shed light on the molecular basis of coronary artery disease (CAD), the leading cause of morbidity and mortality worldwide.

The discoveries, detailed in the June 11 online issue of Nature Genetics, reveal genetic factors impacting heart disease that open new avenues for targeted treatments and personalized approaches to cardiovascular care.

The investigators used an in silico, or computer-derived, score for coronary artery disease (ISCAD) that holistically represents CAD, as described in a previous paper by the team in The Lancet. The ISCAD score incorporates hundreds of different clinical features from the electronic health record, including vital signs, laboratory test results, medications, symptoms, and diagnoses. To build the score, they trained machine learning models on the electronic health records of 604,914 individuals across the UK Biobank, All of Us Research Program, and BioMe Biobank in this comprehensive meta-analysis.

The score was then tested for association with rare and ultra-rare coding variants found in the exome sequences of these individuals. In addition, the research team conducted further investigation into the discovered genes to study their roles in causal CAD risk factors, clinical manifestations of CAD, and their connections with CAD status in traditional large-scale genome-wide association studies, among other factors.

"Our findings help us understand how these 17 genes are involved in coronary artery disease. Some of these genes are already known to influence heart disease development, while others have never been linked to it before," says Ron Do, PhD, senior study author and the Charles Bronfman Professor in Personalized Medicine at Icahn Mount Sinai. "Our study shows how machine learning tools can uncover genetic insights that traditional methods might miss when comparing cases and controls. This could lead to new ways to identify biological mechanisms of heart disease or gene targets for treatment."

Because they occur in only a small percentage of individuals, rare coding variants may have a significant impact on disease risk or susceptibility when present. Therefore, studying these variants is essential to understanding the genetic basis of diseases and can inform therapeutic targets.

The study was driven by the challenges faced, over the last decade, in identifying rare coding variants associated with CAD using traditional methods relying on diagnosed cases and controls. Diagnostic codes' limitations in capturing the complexity of CAD prompted the researchers to explore new avenues of investigation.

"Our previous Lancet paper showed that a machine learning model trained with electronic health records can generate an in silico score for coronary artery disease, capturing disease across its spectrum," says lead author Ben Omega Petrazzini, BS, Associate Bioinformatician in Dr. Do's lab at Icahn Mount Sinai. "Based on these findings, we hypothesized that the in-silico score for CAD could reveal novel rare coding variants related to CAD by offering a more holistic view of the disease."

Next, the investigators plan to further investigate the role of the identified genes in CAD biology and explore potential applications of machine learning in the genetic study of other complex diseases, as part of their ongoing efforts to advance understanding of disease mechanisms, discover new treatments, and improve patient outcomes.

Petrazzini BO, Forrest IS, Rocheleau G, Vy HMT, Márquez-Luna C, Duffy Á, Chen R, Park JK, Gibson K, Goonewardena SN, Malick WA, Rosenson RS, Jordan DM, Do R.
Exome sequence analysis identifies rare coding variants associated with a machine learning-based marker for coronary artery disease.
Nat Genet. 2024 Jun 11. doi: 10.1038/s41588-024-01791-x

Most Popular Now

Giving Doctors an AI-Powered Head Start …

Detection of melanoma and a range of other skin diseases will be faster and more accurate with a new artificial intelligence (AI) powered tool that analyses multiple imaging types simultaneously...

AI Medical Receptionist Modernizing Doct…

A virtual medical receptionist named "Cassie," developed through research at Texas A&M University, is transforming the way patients interact with health care providers. Cassie is a digital-human assistant created by Humanate...

Using Data and AI to Create Better Healt…

Academic medical centers could transform patient care by adopting principles from learning health systems principles, according to researchers from Weill Cornell Medicine and the University of California, San Diego. In...

Northern Ireland Completes Nationwide Ro…

Go-lives at Western and Southern health and social care trusts mean every pathology service is using the same laboratory information management system; improving efficiency and quality. An ambitious technology project to...

AI Detects Hidden Heart Disease Using Ex…

Mass General Brigham researchers have developed a new AI tool in collaboration with the United States Department of Veterans Affairs (VA) to probe through previously collected CT scans and identify...

AI Tool Set to Transform Characterisatio…

A multinational team of researchers, co-led by the Garvan Institute of Medical Research, has developed and tested a new AI tool to better characterise the diversity of individual cells within...

Human-AI Collectives Make the Most Accur…

Diagnostic errors are among the most serious problems in everyday medical practice. AI systems - especially large language models (LLMs) like ChatGPT-4, Gemini, or Claude 3 - offer new ways...

MHP-Net: A Revolutionary AI Model for Ac…

Liver cancer is the sixth most common cancer globally and a leading cause of cancer-related deaths. Accurate segmentation of liver tumors is a crucial step for the management of the...

Highland Marketing Announced as Official…

Highland Marketing has been named, for the second year running, the official communications partner for HETT Show 2025, the UK's leading digital health conference and exhibition. Taking place 7-8 October...

Groundbreaking TACIT Algorithm Offers Ne…

Researchers at VCU Massey Comprehensive Cancer Center have developed a novel algorithm that could provide a revolutionary tool for determining the best options for patients - both in the treatment...

The Many Ways that AI Enters Rheumatolog…

High-resolution computed tomography (HRCT) is the standard to diagnose and assess progression in interstitial lung disease (ILD), a key feature in systemic sclerosis (SSc). But AI-assisted interpretation has the potential...