New AI Algorithm Detects Rare Epileptic Seizures

More than 3.4 million people in the US and 65 million people worldwide have epilepsy, a neurological disorder that affects the nervous system and causes seizures. One in 26 people will develop epilepsy at some point in their lives, and 1 out of 1000 people with epilepsy die from unexpected deaths each year.

Like many conditions, epilepsy treatment starts with early detection. The World Health Organization estimates that 70% of people with epilepsy could live seizure-free if adequately diagnosed and treated.

Over the years, machine learning techniques have been developed to detect and classify seizures from electroencephalography (EEG) signals captured using electrodes on the brain, looking for correlations too intricate for humans to tackle alone.

However, these systems have struggled to detect rare forms of epileptic seizures. That’s because AI relies on data to learn patterns and make predictions—insufficient examples of these rarer seizures limit its ability to perform well in less common cases.

Now, USC researchers have developed an AI system to identify epilepsy by analyzing brain interactions, improving diagnosis of rare and complex cases. The system, presented at the Advances in Knowledge Discovery and Data Mining (PAKDD) conference in May 2024, demonstrated a 12% improvement in state-of-the-art models.

By integrating multiple sources of information usually overlooked by AI systems in epilepsy detection, including the positions of EEG electrodes and the brain regions they monitor, the AI can identify patterns or features that indicate when a seizure is likely to occur. This technique also helps the system generate accurate results with less data, even in rare seizure types where there may only be a few examples in the training data.

"Usually, for the simplest kind of use cases, an AI system can say whether someone has had a seizure since it's a simple binary classification," said co-author Cyrus Shahabi, a computer science, electrical engineering, and spatial sciences professor. "But there are different, rarer types of seizures that are not easy to classify - existing techniques have low accuracy in this task."

Take, for instance, atonic seizures, a rare type of seizure that often affects children and triggers sudden loss of muscle control and collapse. In this case, the system would look at spatial relationships in brain regions and prioritize brain areas involved in muscle control, such as the motor cortex, basal ganglia, cerebellum, and brainstem, to identify activity patterns indicative of atonic seizures.

"In our framework, we have the spatial relationships, semantics, and descriptions of each part of the brain," said lead author Arash Hajisafi, a computer science doctoral student supervised by Shahabi. "All that information gets pulled in to help the model figure out relevant features of this type of seizure. So even if you feed the neural net a small amount of samples, it will still learn."

The goal is not to replace doctors, said the researchers, but to supplement their knowledge in hard-to-detect cases. For Paul Thompson, a USC neuroscientist and professor of neurology who was not involved with the study, it is a welcome breakthrough that could be a "game-changer" in clinical neurology.

"Understanding seizure types is crucial for early treatment, but recordings of brain activity are extremely complex," said Thompson. "This breakthrough brings the power of AI to detect patterns that a human would find hard to identify, making this task easier, faster, and more reliable for clinicians."

One day, the researchers hope the technology will be incorporated into wearable sensors that feed information to a smartphone.

"Brain seizures happen very suddenly, and so detecting seizures earlier really could save lives," said Shahabi. "The system could prompt an alert if it detects any irregularities in the brain waves. This would open up incredible opportunities for diagnosis and treatment of epilepsy."

Hajisafi A, Lin H, Chiang YY, Shahabi C.
Dynamic GNNs for Precise Seizure Detection and Classification from EEG Data.
InPacific-Asia Conference on Knowledge Discovery and Data Mining 2024 May 1 (pp. 207-220). doi: /10.48550/arXiv.2405.09568

Most Popular Now

Researchers Find Telemedicine may Help R…

Low-value care - medical tests and procedures that provide little to no benefit to patients - contributes to excess medical spending and both direct and cascading harms to patients. A...

AI Revolutionizes Glaucoma Care

Imagine walking into a supermarket, train station, or shopping mall and having your eyes screened for glaucoma within seconds - no appointment needed. With the AI-based Glaucoma Screening (AI-GS) network...

AI may Help Clinicians Personalize Treat…

Individuals with generalized anxiety disorder (GAD), a condition characterized by daily excessive worry lasting at least six months, have a high relapse rate even after receiving treatment. Artificial intelligence (AI)...

Accelerating NHS Digital Maturity: Paper…

Digitised clinical noting at South Tees Hospitals NHS Foundation Trust is creating efficiencies for busy doctors and nurses. The trust’s CCIO Dr Andrew Adair, deputy CCIO Dr John Greenaway, and...

Mobile App Tracking Blood Pressure Helps…

The AHOMKA platform, an innovative mobile app for patient-to-provider communication that developed through a collaboration between the School of Engineering and leading medical institutions in Ghana, has yielded positive results...

AI can Open Up Beds in the ICU

At the height of the COVID-19 pandemic, hospitals frequently ran short of beds in intensive care units. But even earlier, ICUs faced challenges in keeping beds available. With an aging...

Can AI Help Detect Cognitive Impairment?

Mild cognitive impairment (MCI) can be an early indicator of Alzheimer's disease or dementia, so identifying those with cognitive issues early could lead to interventions and better outcomes. But diagnosing...

Customized Smartphone App Shows Promise …

A growing body of research indicates that older adults in assisted living facilities can delay or even prevent cognitive decline through interventions that combine multiple activities, such as improving diet...

New Study Shows Promise for Gamified mHe…

A new study published in Multiple Sclerosis and Related Disorders highlights the potential of More Stamina, a gamified mobile health (mHealth) app designed to help people with Multiple Sclerosis (MS)...

AI Model Predicting Two-Year Risk of Com…

AFib (short for atrial fibrillation), a common heart rhythm disorder in adults, can have disastrous consequences including life-threatening blood clots and stroke if left undetected or untreated. A new study...

Patients' Affinity for AI Messages …

In a Duke Health-led survey, patients who were shown messages written either by artificial intelligence (AI) or human clinicians indicated a preference for responses drafted by AI over a human...

New Research Explores How AI can Build T…

In today’s economy, many workers have transitioned from manual labor toward knowledge work, a move driven primarily by technological advances, and workers in this domain face challenges around managing non-routine...