New AI Algorithm Detects Rare Epileptic Seizures

More than 3.4 million people in the US and 65 million people worldwide have epilepsy, a neurological disorder that affects the nervous system and causes seizures. One in 26 people will develop epilepsy at some point in their lives, and 1 out of 1000 people with epilepsy die from unexpected deaths each year.

Like many conditions, epilepsy treatment starts with early detection. The World Health Organization estimates that 70% of people with epilepsy could live seizure-free if adequately diagnosed and treated.

Over the years, machine learning techniques have been developed to detect and classify seizures from electroencephalography (EEG) signals captured using electrodes on the brain, looking for correlations too intricate for humans to tackle alone.

However, these systems have struggled to detect rare forms of epileptic seizures. That’s because AI relies on data to learn patterns and make predictions—insufficient examples of these rarer seizures limit its ability to perform well in less common cases.

Now, USC researchers have developed an AI system to identify epilepsy by analyzing brain interactions, improving diagnosis of rare and complex cases. The system, presented at the Advances in Knowledge Discovery and Data Mining (PAKDD) conference in May 2024, demonstrated a 12% improvement in state-of-the-art models.

By integrating multiple sources of information usually overlooked by AI systems in epilepsy detection, including the positions of EEG electrodes and the brain regions they monitor, the AI can identify patterns or features that indicate when a seizure is likely to occur. This technique also helps the system generate accurate results with less data, even in rare seizure types where there may only be a few examples in the training data.

"Usually, for the simplest kind of use cases, an AI system can say whether someone has had a seizure since it's a simple binary classification," said co-author Cyrus Shahabi, a computer science, electrical engineering, and spatial sciences professor. "But there are different, rarer types of seizures that are not easy to classify - existing techniques have low accuracy in this task."

Take, for instance, atonic seizures, a rare type of seizure that often affects children and triggers sudden loss of muscle control and collapse. In this case, the system would look at spatial relationships in brain regions and prioritize brain areas involved in muscle control, such as the motor cortex, basal ganglia, cerebellum, and brainstem, to identify activity patterns indicative of atonic seizures.

"In our framework, we have the spatial relationships, semantics, and descriptions of each part of the brain," said lead author Arash Hajisafi, a computer science doctoral student supervised by Shahabi. "All that information gets pulled in to help the model figure out relevant features of this type of seizure. So even if you feed the neural net a small amount of samples, it will still learn."

The goal is not to replace doctors, said the researchers, but to supplement their knowledge in hard-to-detect cases. For Paul Thompson, a USC neuroscientist and professor of neurology who was not involved with the study, it is a welcome breakthrough that could be a "game-changer" in clinical neurology.

"Understanding seizure types is crucial for early treatment, but recordings of brain activity are extremely complex," said Thompson. "This breakthrough brings the power of AI to detect patterns that a human would find hard to identify, making this task easier, faster, and more reliable for clinicians."

One day, the researchers hope the technology will be incorporated into wearable sensors that feed information to a smartphone.

"Brain seizures happen very suddenly, and so detecting seizures earlier really could save lives," said Shahabi. "The system could prompt an alert if it detects any irregularities in the brain waves. This would open up incredible opportunities for diagnosis and treatment of epilepsy."

Hajisafi A, Lin H, Chiang YY, Shahabi C.
Dynamic GNNs for Precise Seizure Detection and Classification from EEG Data.
InPacific-Asia Conference on Knowledge Discovery and Data Mining 2024 May 1 (pp. 207-220). doi: /10.48550/arXiv.2405.09568

Most Popular Now

European Artificial Intelligence Act Com…

The European Artificial Intelligence Act (AI Act), the world's first comprehensive regulation on artificial intelligence, enters into force. The AI Act is designed to ensure that AI developed and used...

Generative AI can Not yet Reliably Read …

It may someday be possible to use Large Language Models (LLM) to automatically read clinical notes in medical records and reliably and efficiently extract relevant information to support patient care...

Patient Safety must be Central to the De…

An EPR system brings together different patient information in one place, making it easier to access for healthcare professionals. This information can include patients' own notes, test results, observations by...

AI can Help Rule out Abnormal Pathology …

A commercial artificial intelligence (AI) tool used off-label was effective at excluding pathology and had equal or lower rates of critical misses on chest X-ray than radiologists, according to a...

ChatGPT Shows Promise in Answering Patie…

The groundbreaking ChatGPT chatbot shows potential as a time-saving tool for responding to patient questions sent to the urologist's office, suggests a study in the September issue of Urology Practice®...

Survey: Most Americans Comfortable with …

Artificial intelligence (AI) is all around us - from smart home devices to entertainment and social media algorithms. But is AI okay in healthcare? A new national survey commissioned by...

What Does the EU's Recent AI Act Me…

The European Union's law on artificial intelligence came into force on 1 August. The new AI Act essentially regulates what artificial intelligence can and cannot do in the EU. A...

AI Spots Cancer and Viral Infections at …

Researchers at the Centre for Genomic Regulation (CRG), the University of the Basque Country (UPV/EHU), Donostia International Physics Center (DIPC) and the Fundación Biofisica Bizkaia (FBB, located in Biofisika Institute)...

Video Gaming Improves Mental Well-Being

A pioneering study titled "Causal effect of video gaming on mental well-being in Japan 2020-2022," published in Nature Human Behaviour, has conducted the most comprehensive investigation to date on the...

New Diabetes Research Links Blood Glucos…

As part of its ongoing exploration of vocal biomarkers and the role they can play in enhancing health outcomes, Klick Labs published a new study in Scientific Reports - confirming...

New AI Software could Make Diagnosing De…

Although Alzheimer's is the most common cause of dementia - a catchall term for cognitive deficits that impact daily living, like the loss of memory or language - it's not...

Machine learning helps identify rheumato…

A machine-learning tool created by Weill Cornell Medicine and Hospital for Special Surgery (HSS) investigators can help distinguish subtypes of rheumatoid arthritis (RA), which may help scientists find ways to...