Comprehensive Bibliographic Dataset Advances Health AI Research

A groundbreaking study published in Health Data Science, a Science Partner Journal, introduces a curated bibliographic dataset that aims to revolutionize the landscape of Health Artificial Intelligence (AI) research. Led by Xuanyu Shi and Jian Du from Peking University, this dataset integrates a vast array of Health AI-related documents, offering an invaluable resource for researchers, policymakers, and practitioners.

The dataset, encompassing publications, open research datasets, patents, grants, and clinical trials from 2009 to 2021, was meticulously curated using data from Medline and Dimensions databases. The primary objective of this study was to address the challenge of navigating the vast and rapidly evolving field of Health AI by creating a comprehensive, accessible bibliographic resource.

"Our goal was to provide a dataset that empowers the Health AI community to harness the full potential of AI technologies in improving healthcare outcomes," said Xuanyu Shi, a PhD candidate at Peking University. "By integrating diverse sources of information, we have created a resource that can drive further innovation and facilitate a more coherent research ecosystem."

The study's methodology involved identifying relevant documents using Medical Subject Headings (MeSH) and Field of Research (FoR) terms, followed by mapping these documents to various health problems and AI technologies. The result is a dataset that adheres to the FAIR (Findable, Accessible, Interoperable, Reusable) principles, ensuring its utility for a wide range of applications in Health AI research.

The dataset includes 96,332 Health AI documents, with 75,820 publications, 638 open research datasets, 11,226 patents, 6,113 grants, and 2,535 clinical trials. This extensive collection is designed to facilitate horizontal scanning of funding, research, clinical assessments, and innovations within the Health AI field.

"This dataset represents a significant step forward in Health AI research," said Jian Du, Assistant Professor at Peking University. "By providing a structured and comprehensive resource, we hope to support the Health AI community in developing evidence-based policies, fostering cross-disciplinary collaboration, and ultimately improving healthcare outcomes."

Shi X, Yin D, Bai Y, Zhao W, Guo X, Sun H, Cui D, Du J.
A Bibliographic Dataset of Health Artificial Intelligence Research.
Health Data Sci. 2024 Apr 5;4:0125. doi: 10.34133/hds.0125

Most Popular Now

Integrating Care Records is Good. Using …

Opinion Article by Dr Paul Deffley, Chief Medical Officer, Alcidion. A single patient record already exists in the NHS. Or at least, that’s a perception shared by many. A survey of...

Should AI Chatbots Replace Your Therapis…

The new study exposes the dangerous flaws in using artificial intelligence (AI) chatbots for mental health support. For the first time, the researchers evaluated these AI systems against clinical standards...

AI could Help Pathologists Match Cancer …

A new study by researchers at the Icahn School of Medicine at Mount Sinai, Memorial Sloan Kettering Cancer Center, and collaborators, suggests that artificial intelligence (AI) could significantly improve how...

AI Detects Early Signs of Osteoporosis f…

Investigators have developed an artificial intelligence-assisted diagnostic system that can estimate bone mineral density in both the lumbar spine and the femur of the upper leg, based on X-ray images...

AI Model Converts Hospital Records into …

UCLA researchers have developed an AI system that turns fragmented electronic health records (EHR) normally in tables into readable narratives, allowing artificial intelligence to make sense of complex patient histories...

AI Sharpens Pathologists' Interpret…

Pathologists' examinations of tissue samples from skin cancer tumours improved when they were assisted by an AI tool. The assessments became more consistent and patients' prognoses were described more accurately...

AI Tool Detects Surgical Site Infections…

A team of Mayo Clinic researchers has developed an artificial intelligence (AI) system that can detect surgical site infections (SSIs) with high accuracy from patient-submitted postoperative wound photos, potentially transforming...

Forging a Novel Therapeutic Path for Pat…

Rett syndrome is a devastating rare genetic childhood disorder primarily affecting girls. Merely 1 out of 10,000 girls are born with it and much fewer boys. It is caused by...

Mayo Clinic's AI Tool Identifies 9 …

Mayo Clinic researchers have developed a new artificial intelligence (AI) tool that helps clinicians identify brain activity patterns linked to nine types of dementia, including Alzheimer's disease, using a single...

AI Detects Fatty Liver Disease with Ches…

Fatty liver disease, caused by the accumulation of fat in the liver, is estimated to affect one in four people worldwide. If left untreated, it can lead to serious complications...

Meet Your Digital Twin

Before an important meeting or when a big decision needs to be made, we often mentally run through various scenarios before settling on the best course of action. But when...

NHS National Rehabilitation Centre to De…

The new NHS National Rehabilitation Centre will deploy technology to help patients to maintain their independence as they recover from life-changing injuries and illnesses and regain quality of life. Airwave Healthcare...