Comprehensive Bibliographic Dataset Advances Health AI Research

A groundbreaking study published in Health Data Science, a Science Partner Journal, introduces a curated bibliographic dataset that aims to revolutionize the landscape of Health Artificial Intelligence (AI) research. Led by Xuanyu Shi and Jian Du from Peking University, this dataset integrates a vast array of Health AI-related documents, offering an invaluable resource for researchers, policymakers, and practitioners.

The dataset, encompassing publications, open research datasets, patents, grants, and clinical trials from 2009 to 2021, was meticulously curated using data from Medline and Dimensions databases. The primary objective of this study was to address the challenge of navigating the vast and rapidly evolving field of Health AI by creating a comprehensive, accessible bibliographic resource.

"Our goal was to provide a dataset that empowers the Health AI community to harness the full potential of AI technologies in improving healthcare outcomes," said Xuanyu Shi, a PhD candidate at Peking University. "By integrating diverse sources of information, we have created a resource that can drive further innovation and facilitate a more coherent research ecosystem."

The study's methodology involved identifying relevant documents using Medical Subject Headings (MeSH) and Field of Research (FoR) terms, followed by mapping these documents to various health problems and AI technologies. The result is a dataset that adheres to the FAIR (Findable, Accessible, Interoperable, Reusable) principles, ensuring its utility for a wide range of applications in Health AI research.

The dataset includes 96,332 Health AI documents, with 75,820 publications, 638 open research datasets, 11,226 patents, 6,113 grants, and 2,535 clinical trials. This extensive collection is designed to facilitate horizontal scanning of funding, research, clinical assessments, and innovations within the Health AI field.

"This dataset represents a significant step forward in Health AI research," said Jian Du, Assistant Professor at Peking University. "By providing a structured and comprehensive resource, we hope to support the Health AI community in developing evidence-based policies, fostering cross-disciplinary collaboration, and ultimately improving healthcare outcomes."

Shi X, Yin D, Bai Y, Zhao W, Guo X, Sun H, Cui D, Du J.
A Bibliographic Dataset of Health Artificial Intelligence Research.
Health Data Sci. 2024 Apr 5;4:0125. doi: 10.34133/hds.0125

Most Popular Now

AI System Helps Doctors Identify Patient…

A new study from Vanderbilt University Medical Center shows that clinical alerts driven by artificial intelligence (AI) can help doctors identify patients at risk for suicide, potentially improving prevention efforts...

Smartphone App can Help Reduce Opioid Us…

Patients with opioid use disorder can reduce their days of opioid use and stay in treatment longer when using a smartphone app as supportive therapy in combination with medication, a...

AI's New Move: Transforming Skin Ca…

Pioneering research has unveiled a powerful new tool in the fight against skin cancer, combining cutting-edge artificial intelligence (AI) with deep learning to enhance the precision of skin lesion classification...

Leveraging AI to Assist Clinicians with …

Physical examinations are important diagnostic tools that can reveal critical insights into a patient's health, but complex conditions may be overlooked if a clinician lacks specialized training in that area...

AI can Improve Ovarian Cancer Diagnoses

A new international study led by researchers at Karolinska Institutet in Sweden shows that AI-based models can outperform human experts at identifying ovarian cancer in ultrasound images. The study is...

Predicting the Progression of Autoimmune…

Autoimmune diseases, where the immune system mistakenly attacks the body's own healthy cells and tissues, often have a preclinical stage before diagnosis that’s characterized by mild symptoms or certain antibodies...

Major EU Project to Investigate Societal…

A new €3 million EU research project led by University College Dublin (UCD) Centre for Digital Policy will explore the benefits and risks of Artificial Intelligence (AI) from a societal...

Using AI to Uncover Hospital Patients�…

Across the United States, no hospital is the same. Equipment, staffing, technical capabilities, and patient populations can all differ. So, while the profiles developed for people with common conditions may...

New AI Tool Uses Routine Blood Tests to …

Doctors around the world may soon have access to a new tool that could better predict whether individual cancer patients will benefit from immune checkpoint inhibitors - a type of...

New Method Tracks the 'Learning Cur…

Introducing Annotatability - a powerful new framework to address a major challenge in biological research by examining how artificial neural networks learn to label genomic data. Genomic datasets often contain...

From Text to Structured Information Secu…

Artificial intelligence (AI) and above all large language models (LLMs), which also form the basis for ChatGPT, are increasingly in demand in hospitals. However, patient data must always be protected...

Picking the Right Doctor? AI could Help

Years ago, as she sat in waiting rooms, Maytal Saar-Tsechansky began to wonder how people chose a good doctor when they had no way of knowing a doctor's track record...