AI can Help Improve Emergency Room Admission Decisions

Generative artificial intelligence (AI), such as GPT-4, can help predict whether an emergency room patient needs to be admitted to the hospital even with only minimal training on a limited number of records, according to investigators at the Icahn School of Medicine at Mount Sinai. Details of the research were published in the online issue of the Journal of the American Medical Informatics Association.

In the retrospective study, the researchers analyzed records from seven Mount Sinai Health System hospitals, using both structured data, such as vital signs, and unstructured data, such as nurse triage notes, from more than 864,000 emergency room visits while excluding identifiable patient data. Of these visits, 159,857 (18.5 percent) led to the patient being admitted to the hospital.

The researchers compared GPT-4 against traditional machine-learning models such as Bio-Clinical-BERT for text and XGBoost for structured data in various scenarios, assessing its performance to predict hospital admissions independently and in combination with the traditional methods.

"We were motivated by the need to test whether generative AI, specifically large language models (LLMs) like GPT-4, could improve our ability to predict admissions in high-volume settings such as the Emergency Department," says co-senior author Eyal Klang, MD, Director of the Generative AI Research Program in the Division of Data-Driven and Digital Medicine (D3M) at Icahn Mount Sinai. "Our goal is to enhance clinical decision-making through this technology. We were surprised by how well GPT-4 adapted to the ER setting and provided reasoning for its decisions. This capability of explaining its rationale sets it apart from traditional models and opens up new avenues for AI in medical decision-making."

While traditional machine-learning models use millions of records for training, LLMs can effectively learn from just a few examples. Moreover, according to the researchers, LLMs can incorporate traditional machine-learning predictions, improving performance

"Our research suggests that AI could soon support doctors in emergency rooms by making quick, informed decisions about patient admissions. This work opens the door for further innovation in health care AI, encouraging the development of models that can reason and learn from limited data, like human experts do," says co-senior author Girish N. Nadkarni, MD, MPH, Irene and Dr. Arthur M. Fishberg Professor of Medicine at Icahn Mount Sinai, Director of The Charles Bronfman Institute of Personalized Medicine, and System Chief of D3M. "However, while the results are encouraging, the technology is still in a supportive role, enhancing the decision-making process by providing additional insights, not taking over the human component of health care, which remains critical."

The research team is investigating how to apply large language models to health care systems, with the goal of harmoniously integrating them with traditional machine-learning methods to address complex challenges and decision-making in real-time clinical settings.

"Our study informs how LLMs can be integrated into health care operations. The ability to rapidly train LLMs highlights their potential to provide valuable insights even in complex environments like health care," says Brendan Carr, MD, MA, MS, a study co-author and emergency room physician who is Chief Executive Officer of Mount Sinai Health System. "Our study sets the stage for further research on AI integration in health care across the many domains of diagnostic, treatment, operational, and administrative tasks that require continuous optimization."

Glicksberg BS, Timsina P, Patel D, Sawant A, Vaid A, Raut G, Charney AW, Apakama D, Carr BG, Freeman R, Nadkarni GN, Klang E.
Evaluating the accuracy of a state-of-the-art large language model for prediction of admissions from the emergency room.
J Am Med Inform Assoc. 2024 May 21:ocae103. doi: 10.1093/jamia/ocae103

Most Popular Now

AI for Real-Rime, Patient-Focused Insigh…

A picture may be worth a thousand words, but still... they both have a lot of work to do to catch up to BiomedGPT. Covered recently in the prestigious journal Nature...

A "Chemical ChatGPT" for New M…

Researchers from the University of Bonn have trained an AI process to predict potential active ingredients with special properties. Therefore, they derived a chemical language model - a kind of...

Siemens Healthineers co-leads EU Project…

Siemens Healthineers is joining forces with more than 20 industry and public partners, including seven leading stroke hospitals, to improve stroke management for patients all over Europe. With a total...

In 10 Seconds, an AI Model Detects Cance…

Researchers have developed an AI powered model that - in 10 seconds - can determine during surgery if any part of a cancerous brain tumor that could be removed remains...

Does AI Improve Doctors' Diagnoses?

With hospitals already deploying artificial intelligence to improve patient care, a new study has found that using Chat GPT Plus does not significantly improve the accuracy of doctors' diagnoses when...

AI Analysis of PET/CT Images can Predict…

Dr. Watanabe and his teams from Niigata University have revealed that PET/CT image analysis using artificial intelligence (AI) can predict the occurrence of interstitial lung disease, known as a serious...

MEDICA and COMPAMED 2024: Shining a Ligh…

11 - 14 November 2024, Düsseldorf, Germany. Christian Grosser, Director Health & Medical Technologies, is looking forward to events getting under way: "From next Monday to Thursday, we will once again...

New Medical AI Tool Identifies more Case…

Investigators at Mass General Brigham have developed an AI-based tool to sift through electronic health records to help clinicians identify cases of long COVID, an often mysterious condition that can...

NIH-Developed AI Algorithm Successfully …

Researchers from the National Institutes of Health (NIH) have developed an artificial intelligence (AI) algorithm to help speed up the process of matching potential volunteers to relevant clinical research trials...

Jane Stephenson Joins SPARK TSL as Chief…

Jane Stephenson has joined SPARK TSL as chief executive as the company looks to establish the benefits of SPARK Fusion with trusts looking for deployable solutions to improve productivity. Stephenson joins...

MEDICA 2024 and COMPAMED 2024: Medical T…

11 - 14 November 2024, Düsseldorf, Germany. "Meet Health. Future. People." is MEDICA's campaign motto for the future in the new trade fair year 2025. The aptness of the motto...

500 Patient Images per Second Shared thr…

The image exchange portal, widely known in the NHS as the IEP, is now being used to share as many as 500 images each second - including x-rays, CT, MRI...