AI can Help Improve Emergency Room Admission Decisions

Generative artificial intelligence (AI), such as GPT-4, can help predict whether an emergency room patient needs to be admitted to the hospital even with only minimal training on a limited number of records, according to investigators at the Icahn School of Medicine at Mount Sinai. Details of the research were published in the online issue of the Journal of the American Medical Informatics Association.

In the retrospective study, the researchers analyzed records from seven Mount Sinai Health System hospitals, using both structured data, such as vital signs, and unstructured data, such as nurse triage notes, from more than 864,000 emergency room visits while excluding identifiable patient data. Of these visits, 159,857 (18.5 percent) led to the patient being admitted to the hospital.

The researchers compared GPT-4 against traditional machine-learning models such as Bio-Clinical-BERT for text and XGBoost for structured data in various scenarios, assessing its performance to predict hospital admissions independently and in combination with the traditional methods.

"We were motivated by the need to test whether generative AI, specifically large language models (LLMs) like GPT-4, could improve our ability to predict admissions in high-volume settings such as the Emergency Department," says co-senior author Eyal Klang, MD, Director of the Generative AI Research Program in the Division of Data-Driven and Digital Medicine (D3M) at Icahn Mount Sinai. "Our goal is to enhance clinical decision-making through this technology. We were surprised by how well GPT-4 adapted to the ER setting and provided reasoning for its decisions. This capability of explaining its rationale sets it apart from traditional models and opens up new avenues for AI in medical decision-making."

While traditional machine-learning models use millions of records for training, LLMs can effectively learn from just a few examples. Moreover, according to the researchers, LLMs can incorporate traditional machine-learning predictions, improving performance

"Our research suggests that AI could soon support doctors in emergency rooms by making quick, informed decisions about patient admissions. This work opens the door for further innovation in health care AI, encouraging the development of models that can reason and learn from limited data, like human experts do," says co-senior author Girish N. Nadkarni, MD, MPH, Irene and Dr. Arthur M. Fishberg Professor of Medicine at Icahn Mount Sinai, Director of The Charles Bronfman Institute of Personalized Medicine, and System Chief of D3M. "However, while the results are encouraging, the technology is still in a supportive role, enhancing the decision-making process by providing additional insights, not taking over the human component of health care, which remains critical."

The research team is investigating how to apply large language models to health care systems, with the goal of harmoniously integrating them with traditional machine-learning methods to address complex challenges and decision-making in real-time clinical settings.

"Our study informs how LLMs can be integrated into health care operations. The ability to rapidly train LLMs highlights their potential to provide valuable insights even in complex environments like health care," says Brendan Carr, MD, MA, MS, a study co-author and emergency room physician who is Chief Executive Officer of Mount Sinai Health System. "Our study sets the stage for further research on AI integration in health care across the many domains of diagnostic, treatment, operational, and administrative tasks that require continuous optimization."

Glicksberg BS, Timsina P, Patel D, Sawant A, Vaid A, Raut G, Charney AW, Apakama D, Carr BG, Freeman R, Nadkarni GN, Klang E.
Evaluating the accuracy of a state-of-the-art large language model for prediction of admissions from the emergency room.
J Am Med Inform Assoc. 2024 May 21:ocae103. doi: 10.1093/jamia/ocae103

Most Popular Now

AI can Help Improve Emergency Room Admis…

Generative artificial intelligence (AI), such as GPT-4, can help predict whether an emergency room patient needs to be admitted to the hospital even with only minimal training on a limited...

Philips ePatch and AI Analytics Platform…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, announced the successful nationwide rollout of its ambulatory cardiac monitoring service in Spain using its unique wearable ePatch...

Comprehensive Bibliographic Dataset Adva…

A groundbreaking study published in Health Data Science, a Science Partner Journal, introduces a curated bibliographic dataset that aims to revolutionize the landscape of Health Artificial Intelligence (AI) research. Led...

AI Health Coach Lowers Blood Pressure an…

A new study in JMIR Cardio, published by JMIR Publications, shows that a fully digital, artificial intelligence (AI)-driven lifestyle coaching program can effectively reduce blood pressure (BP) in adults with...

Will Generative AI Change the Way Univer…

Since the launch of ChatGPT 3 in November 2022, we've been abuzz with talk of artificial intelligence: is it an unprecedented opportunity, or will it rob everyone of jobs and...

New Deep Learning Model is 'Game Ch…

Research led by the University of Plymouth has shown that a new deep learning AI model can identify what happens and when during embryonic development, from video. Published in the Journal...

Huge NHS Cloud Deals Mean Tough Question…

Opinion Article by Chris Scarisbrick, Deputy Managing Director, Sectra. The largest public cloud projects to ever take place within the NHS are beginning. Regional procurements for public cloud hosted diagnostic imaging...

AI Tech should Augment Physician Decisio…

The use of artificial intelligence (AI) in clinical health care has the potential to transform health care delivery but it should not replace physician decision-making, says the American College of...

A Three-Point Plan for Digital Delivery

Sam Shah has seen health tech policy up-close and worries that little progress has been made over the past five-years. However, he has a plan for any health and social...

Facial Thermal Imaging + AI Accurately P…

A combination of facial thermal imaging and artificial intelligence (AI) can accurately predict the presence of coronary artery disease, finds research published in the open access journal BMJ Health &...

New AI Algorithm Detects Rare Epileptic …

More than 3.4 million people in the US and 65 million people worldwide have epilepsy, a neurological disorder that affects the nervous system and causes seizures. One in 26 people...

Siemens Healthineers Debuts New Cardiolo…

Siemens Healthineers announces new cardiology applications with artificial intelligence for the Acuson Sequoia ultrasound system, as well as a new 4D transesophageal (TEE) transducer for cardiology exams. These cardiology applications...