AI can Help Improve Emergency Room Admission Decisions

Generative artificial intelligence (AI), such as GPT-4, can help predict whether an emergency room patient needs to be admitted to the hospital even with only minimal training on a limited number of records, according to investigators at the Icahn School of Medicine at Mount Sinai. Details of the research were published in the online issue of the Journal of the American Medical Informatics Association.

In the retrospective study, the researchers analyzed records from seven Mount Sinai Health System hospitals, using both structured data, such as vital signs, and unstructured data, such as nurse triage notes, from more than 864,000 emergency room visits while excluding identifiable patient data. Of these visits, 159,857 (18.5 percent) led to the patient being admitted to the hospital.

The researchers compared GPT-4 against traditional machine-learning models such as Bio-Clinical-BERT for text and XGBoost for structured data in various scenarios, assessing its performance to predict hospital admissions independently and in combination with the traditional methods.

"We were motivated by the need to test whether generative AI, specifically large language models (LLMs) like GPT-4, could improve our ability to predict admissions in high-volume settings such as the Emergency Department," says co-senior author Eyal Klang, MD, Director of the Generative AI Research Program in the Division of Data-Driven and Digital Medicine (D3M) at Icahn Mount Sinai. "Our goal is to enhance clinical decision-making through this technology. We were surprised by how well GPT-4 adapted to the ER setting and provided reasoning for its decisions. This capability of explaining its rationale sets it apart from traditional models and opens up new avenues for AI in medical decision-making."

While traditional machine-learning models use millions of records for training, LLMs can effectively learn from just a few examples. Moreover, according to the researchers, LLMs can incorporate traditional machine-learning predictions, improving performance

"Our research suggests that AI could soon support doctors in emergency rooms by making quick, informed decisions about patient admissions. This work opens the door for further innovation in health care AI, encouraging the development of models that can reason and learn from limited data, like human experts do," says co-senior author Girish N. Nadkarni, MD, MPH, Irene and Dr. Arthur M. Fishberg Professor of Medicine at Icahn Mount Sinai, Director of The Charles Bronfman Institute of Personalized Medicine, and System Chief of D3M. "However, while the results are encouraging, the technology is still in a supportive role, enhancing the decision-making process by providing additional insights, not taking over the human component of health care, which remains critical."

The research team is investigating how to apply large language models to health care systems, with the goal of harmoniously integrating them with traditional machine-learning methods to address complex challenges and decision-making in real-time clinical settings.

"Our study informs how LLMs can be integrated into health care operations. The ability to rapidly train LLMs highlights their potential to provide valuable insights even in complex environments like health care," says Brendan Carr, MD, MA, MS, a study co-author and emergency room physician who is Chief Executive Officer of Mount Sinai Health System. "Our study sets the stage for further research on AI integration in health care across the many domains of diagnostic, treatment, operational, and administrative tasks that require continuous optimization."

Glicksberg BS, Timsina P, Patel D, Sawant A, Vaid A, Raut G, Charney AW, Apakama D, Carr BG, Freeman R, Nadkarni GN, Klang E.
Evaluating the accuracy of a state-of-the-art large language model for prediction of admissions from the emergency room.
J Am Med Inform Assoc. 2024 May 21:ocae103. doi: 10.1093/jamia/ocae103

Most Popular Now

Unlocking the 10 Year Health Plan

The government's plan for the NHS is a huge document. Jane Stephenson, chief executive of SPARK TSL, argues the key to unlocking its digital ambitions is to consider what it...

Alcidion Grows Top Talent in the UK, wit…

Alcidion has today announced the addition of three new appointments to their UK-based team, with one internal promotion and two external recruits. Dr Paul Deffley has been announced as the...

AI can Find Cancer Pathologists Miss

Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to...

AI, Full Automation could Expand Artific…

Automated insulin delivery (AID) systems such as the UVA Health-developed artificial pancreas could help more type 1 diabetes patients if the devices become fully automated, according to a new review...

How AI could Speed the Development of RN…

Using artificial intelligence (AI), MIT researchers have come up with a new way to design nanoparticles that can more efficiently deliver RNA vaccines and other types of RNA therapies. After training...

MIT Researchers Use Generative AI to Des…

With help from artificial intelligence, MIT researchers have designed novel antibiotics that can combat two hard-to-treat infections: drug-resistant Neisseria gonorrhoeae and multi-drug-resistant Staphylococcus aureus (MRSA). Using generative AI algorithms, the research...

New Training Year Starts at Siemens Heal…

In September, 197 school graduates will start their vocational training or dual studies in Germany at Siemens Healthineers. 117 apprentices and 80 dual students will begin their careers at Siemens...

AI Hybrid Strategy Improves Mammogram In…

A hybrid reading strategy for screening mammography, developed by Dutch researchers and deployed retrospectively to more than 40,000 exams, reduced radiologist workload by 38% without changing recall or cancer detection...

Penn Developed AI Tools and Datasets Hel…

Doctors treating kidney disease have long depended on trial-and-error to find the best therapies for individual patients. Now, new artificial intelligence (AI) tools developed by researchers in the Perelman School...

Are You Eligible for a Clinical Trial? C…

A new study in the academic journal Machine Learning: Health discovers that ChatGPT can accelerate patient screening for clinical trials, showing promise in reducing delays and improving trial success rates. Researchers...

New AI Tool Addresses Accuracy and Fairn…

A team of researchers at the Icahn School of Medicine at Mount Sinai has developed a new method to identify and reduce biases in datasets used to train machine-learning algorithms...

Global Study Reveals How Patients View M…

How physicians feel about artificial intelligence (AI) in medicine has been studied many times. But what do patients think? A team led by researchers at the Technical University of Munich...