New AI Algorithm may Improve Autoimmune Disease Prediction and Therapies

A new advanced artificial intelligence (AI) algorithm may lead to better - and earlier - predictions and novel therapies for autoimmune diseases, which involve the immune system mistakenly attacking their body’s own healthy cells and tissues. The algorithm digs into the genetic code underlying the conditions to more accurately model how genes associated with specific autoimmune diseases are expressed and regulated and to identify additional genes of risk.

The work, developed by a team led by Penn State College of Medicine researchers, outperforms existing methodologies and identified 26% more novel gene and trait associations, the researchers said. They published their work in Nature Communications.

"We all carry some DNA mutations, and we need to figure out how any one of these mutations may influence gene expression linked to disease so we can predict disease risk early. This is especially important for autoimmune disease," said Dajiang Liu, distinguished professor, vice chair for research, and director of artificial intelligence and biomedical informatics at the Penn State College of Medicine and co-senior author of the study. "If an AI algorithm can more accurately predict disease risk, it means we can carry out interventions earlier."

Genetics often underpin disease development. Variations in DNA can influence gene expression, or the process by which the information in DNA is converted into functional products like a protein. How much or how little a gene is expressed can influence disease risk.

Genome-wide association studies (GWAS), a popular approach in human genetics research, can home in on regions of the genome associated with a particular disease or trait but can't pinpoint the specific genes that affect disease risks. It’s like sharing your location with a friend with the precise location setting turned off on your smartphone - the city might be obvious, but the address is obscured. Existing methods are also limited in the granularity of its analysis. Gene expression can be specific to certain types of cells. If the analysis doesn’t distinguish between distinct cell types, the results may overlook real causal relationships between genetic variants and gene expression.

The research team's method, dubbed EXPRESSO for EXpression PREdiction with Summary Statistics Only, applies a more advanced artificial intelligence algorithm and analyzes data from single-cell expression quantitative trait loci, a type of data that links genetic variants to the genes they regulate. It also integrates 3D genomic data and epigenetics - which measures how genes may be modified by environment to influence disease - into its modeling. The team applied EXPRESSO to GWAS datasets for 14 autoimmune diseases, including lupus, Crohn’s disease, ulcerative colitis and rheumatoid arthritis.

"With this new method, we were able to identify many more risk genes for autoimmune disease that actually have cell-type specific effects, meaning that they only have effects in a particular cell type and not others," said Bibo Jiang, assistant professor at the Penn State College of Medicine and senior author of the study.

The team then used this information to identify potential therapeutics for autoimmune disease. Currently, there aren't good long-term treatment options, they said.

"Most treatments are designed to mitigate symptoms, not cure the disease. It’s a dilemma knowing that autoimmune disease needs long-term treatment, but the existing treatments often have such bad side effects that they can’t be used for long. Yet, genomics and AI offer a promising route to develop novel therapeutics," said Laura Carrel, professor of biochemistry and molecular biology at the Penn State College of Medicine and co-senior author of the study.

The team's work pointed to drug compounds that could reverse gene expression in cell types associated with an autoimmune disease, such as vitamin K for ulcerative colitis and metformin, which is typically prescribed for type 2 diabetes, for type 1 diabetes. These drugs, already approved by the Food and Drug Administration as safe and effective for treating other diseases, could potentially be repurposed.

The research team is working with collaborators to validate their findings in a laboratory setting and, ultimately, in clinical trials.

Lida Wang, a doctoral student in the biostatistics program, and Chachrit Khunsriraksakul, who earned a doctorate in bioinformatics and geonomics in 2022 and his medical degree in May from Penn State, co-led the study. Other Penn State College of Medicine authors on the paper include: Havell Markus, who is pursuing a doctorate and a medical degree; Dieyi Chen, doctoral candidate; Fan Zhang, graduate student; and Fang Chen, postdoctoral scholar. Xiaowei Zhan, associate professor at UT Southwestern Medical Center, also contributed to the paper.

Funding from the National Institutes of Health (grant numbers R01HG011035, R01AI174108 and R01ES036042) and the Artificial Intelligence and Biomedical Informatics pilot grant from the Penn State College of Medicine supported this work.

Wang L, Khunsriraksakul C, Markus H, Chen D, Zhang F, Chen F, Zhan X, Carrel L, Liu DJ, Jiang B.
Integrating single cell expression quantitative trait loci summary statistics to understand complex trait risk genes.
Nat Commun. 2024 May 20;15(1):4260. doi: 10.1038/s41467-024-48143-1

Most Popular Now

Stepping Hill Hospital Announced as SPAR…

Stepping Hill Hospital, part of Stockport NHS Foundation Trust, has replaced its bedside units with state-of-the art devices running a full range of information, engagement, communications and productivity apps, to...

DMEA 2025: Digital Health Worldwide in B…

8 - 10 April 2025, Berlin, Germany. From the AI Act, to the potential of the European Health Data Space, to the power of patient data in Scandinavia - DMEA 2025...

Is AI in Medicine Playing Fair?

As artificial intelligence (AI) rapidly integrates into health care, a new study by researchers at the Icahn School of Medicine at Mount Sinai reveals that all generative AI models may...

New System for the Early Detection of Au…

A team from the Human-Tech Institute-Universitat Politècnica de València has developed a new system for the early detection of Autism Spectrum Disorder (ASD) using virtual reality and artificial intelligence. The...

Generative AI's Diagnostic Capabili…

The use of generative AI for diagnostics has attracted attention in the medical field and many research papers have been published on this topic. However, because the evaluation criteria were...

Diagnoses and Treatment Recommendations …

A new study led by Prof. Dan Zeltzer, a digital health expert from the Berglas School of Economics at Tel Aviv University, compared the quality of diagnostic and treatment recommendations...

AI Tool can Track Effectiveness of Multi…

A new artificial intelligence (AI) tool that can help interpret and assess how well treatments are working for patients with multiple sclerosis (MS) has been developed by UCL researchers. AI uses...

Surrey and Sussex Healthcare NHS Trust g…

Surrey and Sussex Healthcare NHS Trust has marked an important milestone in connecting busy radiologists across large parts of South East England, following the successful go live of Sectra's enterprise...

Dr Jason Broch Joins the Highland Market…

The Highland Marketing advisory board has welcomed a new member - Dr Jason Broch, a GP and director with a strong track record in the NHS and IT-enabled transformation. Dr Broch...

DMEA 2025 Ends with Record Attendance an…

8 - 10 April 2025, Berlin, Germany. DMEA 2025 came to a successful close with record attendance and an impressive program. 20,500 participants attended Europe's leading digital health event over the...

Multi-Resistance in Bacteria Predicted b…

An AI model trained on large amounts of genetic data can predict whether bacteria will become antibiotic-resistant. The new study shows that antibiotic resistance is more easily transmitted between genetically...

AI-Driven Smart Devices to Transform Hea…

AI-powered, internet-connected medical devices have the potential to revolutionise healthcare by enabling early disease detection, real-time patient monitoring, and personalised treatments, a new study suggests. They are already saving lives...