AI Tool to Improve Heart Failure Care

UVA Health researchers have developed a powerful new risk assessment tool for predicting outcomes in heart failure patients. The researchers have made the tool publicly available for free to clinicians.

The new tool improves on existing risk assessment tools for heart failure by harnessing the power of machine learning (ML) and artificial intelligence (AI) to determine patient-specific risks of developing unfavorable outcomes with heart failure.

"Heart failure is a progressive condition that affects not only quality of life but quantity as well. All heart failure patients are not the same. Each patient is on a spectrum along the continuum of risk of suffering adverse outcomes," said researcher Sula Mazimba, MD, a heart failure expert. "Identifying the degree of risk for each patient promises to help clinicians tailor therapies to improve outcomes."

Heart failure occurs when the heart is unable to pump enough blood for the body’s needs. This can lead to fatigue, weakness, swollen legs and feet and, ultimately, death. Heart failure is a progressive condition, so it is extremely important for clinicians to be able to identify patients at risk of adverse outcomes.

Further, heart failure is a growing problem. More than 6 million Americans already have heart failure, and that number is expected to increase to more than 8 million by 2030. The UVA researchers developed their new model, called CARNA, to improve care for these patients. (Finding new ways to improve care for patients across Virginia and beyond is a key component of UVA Health’s first-ever 10-year strategic plan.)

The researchers developed their model using anonymized data drawn from thousands of patients enrolled in heart failure clinical trials previously funded by the National Institutes of Health’s National Heart, Lung and Blood Institute. Putting the model to the test, they found it outperformed existing predictors for determining how a broad spectrum of patients would fare in areas such as the need for heart surgery or transplant, the risk of rehospitalization and the risk of death.

The researchers attribute the model’s success to the use of ML/AI and the inclusion of "hemodynamic" clinical data, which describe how blood circulates through the heart, lungs and the rest of the body.

"This model presents a breakthrough because it ingests complex sets of data and can make decisions even among missing and conflicting factors," said researcher Josephine Lamp, of the University of Virginia School of Engineering's Department of Computer Science. "It is really exciting because the model intelligently presents and summarizes risk factors reducing decision burden so clinicians can quickly make treatment decisions."

By using the model, doctors will be better equipped to personalize care to individual patients, helping them live longer, healthier lives, the researchers hope.

"The collaborative research environment at the University of Virginia made this work possible by bringing together experts in heart failure, computer science, data science and statistics," said researcher Kenneth Bilchick, MD, a cardiologist at UVA Health. "Multidisciplinary biomedical research that integrates talented computer scientists like Josephine Lamp with experts in clinical medicine will be critical to helping our patients benefit from AI in the coming years and decades."

The researchers have made their new tool available online for free at https://github.com/jozieLamp/CARNA.

Lamp J, Wu Y, Lamp S, Afriyie P, Ashur N, Bilchick K, Breathett K, Kwon Y, Li S, Mehta N, Pena ER, Feng L, Mazimba S.
Characterizing advanced heart failure risk and hemodynamic phenotypes using interpretable machine learning.
Am Heart J. 2024 May;271:1-11. doi: 10.1016/j.ahj.2024.02.001

Most Popular Now

Airwave Healthcare Expands Team with Fra…

Patient stimulus technology provider Airwave Healthcare has appointed Francesca McPhail, who will help health and care providers achieve more from their media and entertainment systems for people receiving care. Francesca McPhail...

Scientists Use AI to Detect Chronic High…

Researchers at Klick Labs unveiled a cutting-edge, non-invasive technique that can predict chronic high blood pressure (hypertension) with a high degree of accuracy using just a person's voice. Just published...

ChatGPT Outperformed Trainee Doctors in …

The chatbot ChatGPT performed better than trainee doctors in assessing complex cases of respiratory disease in areas such as cystic fibrosis, asthma and chest infections in a study presented at...

Former NHS CIO Will Smart Joins Alcidion

A former national chief information officer for health and social care in England, Will Smart will join the Alcidion Group board in a global role from October. He will provide...

The Darzi Review: The NHS "Is in Se…

Lyn Whitfield, content director at Highland Marketing, takes a look at Lord Darzi's review of the NHS, immediate reaction, and next steps. The review calls for a "tilt towards technology...

SPARK TSL Appoints David Hawkins as its …

SPARK TSL has appointed David Hawkins as its new sales director, to support take-up of the SPARK Fusion infotainment solution by NHS trusts and health boards. SPARK Fusion is a state-of-the-art...

Can Google Street View Data Improve Publ…

Big data and artificial intelligence are transforming how we think about health, from detecting diseases and spotting patterns to predicting outcomes and speeding up response times. In a new study analyzing...

Healthcare Week Luxembourg: Second Editi…

1 - 2 October 2024, Luxembourg.Save the date: Healthcare Week Luxembourg is back on 1 and 2 October 2024 at Luxexpo The Box. Acclaimed last year by healthcare professionals from...

AI Products Like ChatGPT can Provide Med…

The much-hyped AI products like ChatGPt may provide medical doctors and healthcare professionals with information that can aggravate patients' conditions and lead to serious health consequences, a study suggests. Researchers considered...

One in Five UK Soctors use AI Chatbots

A survey led by researchers at Uppsala University in Sweden reveals that a significant proportion of UK general practitioners (GPs) are integrating generative AI tools, such as ChatGPT, into their...

Specially Designed Video Games may Benef…

In a review of previous studies, a Johns Hopkins Children's Center team concludes that some video games created as mental health interventions can be helpful - if modest - tools...

AI may Enhance Patient Safety

Generative artificial intelligence (genAI) uses hundreds of millions, sometimes billions, of data points to train itself to produce realistic and innovative outputs that can mimic human-created content. Its applications include...