AI Tool to Improve Heart Failure Care

UVA Health researchers have developed a powerful new risk assessment tool for predicting outcomes in heart failure patients. The researchers have made the tool publicly available for free to clinicians.

The new tool improves on existing risk assessment tools for heart failure by harnessing the power of machine learning (ML) and artificial intelligence (AI) to determine patient-specific risks of developing unfavorable outcomes with heart failure.

"Heart failure is a progressive condition that affects not only quality of life but quantity as well. All heart failure patients are not the same. Each patient is on a spectrum along the continuum of risk of suffering adverse outcomes," said researcher Sula Mazimba, MD, a heart failure expert. "Identifying the degree of risk for each patient promises to help clinicians tailor therapies to improve outcomes."

Heart failure occurs when the heart is unable to pump enough blood for the body’s needs. This can lead to fatigue, weakness, swollen legs and feet and, ultimately, death. Heart failure is a progressive condition, so it is extremely important for clinicians to be able to identify patients at risk of adverse outcomes.

Further, heart failure is a growing problem. More than 6 million Americans already have heart failure, and that number is expected to increase to more than 8 million by 2030. The UVA researchers developed their new model, called CARNA, to improve care for these patients. (Finding new ways to improve care for patients across Virginia and beyond is a key component of UVA Health’s first-ever 10-year strategic plan.)

The researchers developed their model using anonymized data drawn from thousands of patients enrolled in heart failure clinical trials previously funded by the National Institutes of Health’s National Heart, Lung and Blood Institute. Putting the model to the test, they found it outperformed existing predictors for determining how a broad spectrum of patients would fare in areas such as the need for heart surgery or transplant, the risk of rehospitalization and the risk of death.

The researchers attribute the model’s success to the use of ML/AI and the inclusion of "hemodynamic" clinical data, which describe how blood circulates through the heart, lungs and the rest of the body.

"This model presents a breakthrough because it ingests complex sets of data and can make decisions even among missing and conflicting factors," said researcher Josephine Lamp, of the University of Virginia School of Engineering's Department of Computer Science. "It is really exciting because the model intelligently presents and summarizes risk factors reducing decision burden so clinicians can quickly make treatment decisions."

By using the model, doctors will be better equipped to personalize care to individual patients, helping them live longer, healthier lives, the researchers hope.

"The collaborative research environment at the University of Virginia made this work possible by bringing together experts in heart failure, computer science, data science and statistics," said researcher Kenneth Bilchick, MD, a cardiologist at UVA Health. "Multidisciplinary biomedical research that integrates talented computer scientists like Josephine Lamp with experts in clinical medicine will be critical to helping our patients benefit from AI in the coming years and decades."

The researchers have made their new tool available online for free at https://github.com/jozieLamp/CARNA.

Lamp J, Wu Y, Lamp S, Afriyie P, Ashur N, Bilchick K, Breathett K, Kwon Y, Li S, Mehta N, Pena ER, Feng L, Mazimba S.
Characterizing advanced heart failure risk and hemodynamic phenotypes using interpretable machine learning.
Am Heart J. 2024 May;271:1-11. doi: 10.1016/j.ahj.2024.02.001

Most Popular Now

Do Fitness Apps do More Harm than Good?

A study published in the British Journal of Health Psychology reveals the negative behavioral and psychological consequences of commercial fitness apps reported by users on social media. These impacts may...

AI Tool Beats Humans at Detecting Parasi…

Scientists at ARUP Laboratories have developed an artificial intelligence (AI) tool that detects intestinal parasites in stool samples more quickly and accurately than traditional methods, potentially transforming how labs diagnose...

Making Cancer Vaccines More Personal

In a new study, University of Arizona researchers created a model for cutaneous squamous cell carcinoma, a type of skin cancer, and identified two mutated tumor proteins, or neoantigens, that...

AI can Better Predict Future Risk for He…

A landmark study led by University' experts has shown that artificial intelligence can better predict how doctors should treat patients following a heart attack. The study, conducted by an international...

A New AI Model Improves the Prediction o…

Breast cancer is the most commonly diagnosed form of cancer in the world among women, with more than 2.3 million cases a year, and continues to be one of the...

AI, Health, and Health Care Today and To…

Artificial intelligence (AI) carries promise and uncertainty for clinicians, patients, and health systems. This JAMA Summit Report presents expert perspectives on the opportunities, risks, and challenges of AI in health...

AI System Finds Crucial Clues for Diagno…

Doctors often must make critical decisions in minutes, relying on incomplete information. While electronic health records contain vast amounts of patient data, much of it remains difficult to interpret quickly...

Improved Cough-Detection Tech can Help w…

Researchers have improved the ability of wearable health devices to accurately detect when a patient is coughing, making it easier to monitor chronic health conditions and predict health risks such...

New AI Tool Makes Medical Imaging Proces…

When doctors analyze a medical scan of an organ or area in the body, each part of the image has to be assigned an anatomical label. If the brain is...