Chatbots Tell People What They Want to Hear

Chatbots share limited information, reinforce ideologies, and, as a result, can lead to more polarized thinking when it comes to controversial issues, according to new Johns Hopkins University-led research.

The study challenges perceptions that chatbots are impartial and provides insight into how using conversational search systems could widen the public divide on hot-button issues and leave people vulnerable to manipulation.

"Because people are reading a summary paragraph generated by AI, they think they’re getting unbiased, fact-based answers," said lead author Ziang Xiao, an assistant professor of computer science at Johns Hopkins who studies human-AI interactions. "Even if a chatbot isn’t designed to be biased, its answers reflect the biases or leanings of the person asking the questions. So really, people are getting the answers they want to hear."

Xiao and his team shared their findings at the Association of Computing Machinery's CHI conference on Human Factors in Computing Systems on Monday, May 13.

To see how chatbots influence online searches, the team compared how people interacted with different search systems and how they felt about controversial issues before and after using them.

The researchers asked 272 participants to write out their thoughts about topics including health care, student loans, or sanctuary cities, and then look up more information online about that topic using either a chatbot or a traditional search engine built for the study. After considering the search results, participants wrote a second essay and answered questions about the topic. Researchers also had participants read two opposing articles and questioned them about how much they trusted the information and if they found the viewpoints to be extreme.

Because chatbots offered a narrower range of information than traditional web searches and provided answers that reflected the participants’ preexisting attitudes, the participants who used them became more invested in their original ideas and had stronger reactions to information that challenged their views, the researchers found.

"People tend to seek information that aligns with their viewpoints, a behavior that often traps them in an echo chamber of like-minded opinions," Xiao said. "We found that this echo chamber effect is stronger with the chatbots than traditional web searches."

The echo chamber stems, in part, from the way participants interacted with chatbots, Xiao said. Rather than typing in keywords, as people do for traditional search engines, chatbot users tended to type in full questions, such as, What are the benefits of universal health care? or What are the costs of universal health care? A chatbot would answer with a summary that included only benefits or costs.

"With chatbots, people tend to be more expressive and formulate questions in a more conversational way. It's a function of how we speak," Xiao said. "But our language can be used against us."

AI developers can train chatbots to extract clues from questions and identify people's biases, Xiao said. Once a chatbot knows what a person likes or doesn’t like, it can tailor its responses to match.

In fact, when the researchers created a chatbot with a hidden agenda, designed to agree with people, the echo chamber effect was even stronger.

To try to counteract the echo chamber effect, researchers trained a chatbot to provide answers that disagreed with participants. People’s opinions didn’t change, Xiao said. The researchers also programmed a chatbot to link to source information to encourage people to fact-check, but only a few participants did.

"Given AI-based systems are becoming easier to build, there are going to be opportunities for malicious actors to leverage AIs to make a more polarized society," Xiao said. "Creating agents that always present opinions from the other side is the most obvious intervention, but we found they don't work."

Most Popular Now

AI can Help Improve Emergency Room Admis…

Generative artificial intelligence (AI), such as GPT-4, can help predict whether an emergency room patient needs to be admitted to the hospital even with only minimal training on a limited...

Philips ePatch and AI Analytics Platform…

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, announced the successful nationwide rollout of its ambulatory cardiac monitoring service in Spain using its unique wearable ePatch...

Comprehensive Bibliographic Dataset Adva…

A groundbreaking study published in Health Data Science, a Science Partner Journal, introduces a curated bibliographic dataset that aims to revolutionize the landscape of Health Artificial Intelligence (AI) research. Led...

AI Health Coach Lowers Blood Pressure an…

A new study in JMIR Cardio, published by JMIR Publications, shows that a fully digital, artificial intelligence (AI)-driven lifestyle coaching program can effectively reduce blood pressure (BP) in adults with...

Will Generative AI Change the Way Univer…

Since the launch of ChatGPT 3 in November 2022, we've been abuzz with talk of artificial intelligence: is it an unprecedented opportunity, or will it rob everyone of jobs and...

New Deep Learning Model is 'Game Ch…

Research led by the University of Plymouth has shown that a new deep learning AI model can identify what happens and when during embryonic development, from video. Published in the Journal...

Huge NHS Cloud Deals Mean Tough Question…

Opinion Article by Chris Scarisbrick, Deputy Managing Director, Sectra. The largest public cloud projects to ever take place within the NHS are beginning. Regional procurements for public cloud hosted diagnostic imaging...

AI Tech should Augment Physician Decisio…

The use of artificial intelligence (AI) in clinical health care has the potential to transform health care delivery but it should not replace physician decision-making, says the American College of...

A Three-Point Plan for Digital Delivery

Sam Shah has seen health tech policy up-close and worries that little progress has been made over the past five-years. However, he has a plan for any health and social...

Facial Thermal Imaging + AI Accurately P…

A combination of facial thermal imaging and artificial intelligence (AI) can accurately predict the presence of coronary artery disease, finds research published in the open access journal BMJ Health &...

New AI Algorithm Detects Rare Epileptic …

More than 3.4 million people in the US and 65 million people worldwide have epilepsy, a neurological disorder that affects the nervous system and causes seizures. One in 26 people...

Siemens Healthineers Debuts New Cardiolo…

Siemens Healthineers announces new cardiology applications with artificial intelligence for the Acuson Sequoia ultrasound system, as well as a new 4D transesophageal (TEE) transducer for cardiology exams. These cardiology applications...