Researchers Use Foundation Models to Discover New Cancer Imaging Biomarkers

Researchers at Mass General Brigham have harnessed the technology behind foundation models, which power tools like ChatGPT, to discover new cancer imaging biomarkers that could transform how patterns are identified from radiological images. Improved identification of such patterns can greatly impact the early detection and treatment of cancer.

The research team developed their foundation model using a comprehensive dataset consisting of 11,467 images of abnormal radiologic scans. Using these images, the model was able to identify patterns that predict anatomical site, malignancy, and prognosis across three different use cases in four cohorts. Compared to existing methods in the field, their approach remained powerful when applied to specialized tasks where only limited data are available. Results are published in Nature Machine Intelligence.

"Given that image biomarker studies are tailored to answer increasingly specific research questions, we believe that our work will enable more accurate and efficient investigations," said first author Suraj Pai from the Artificial Intelligence in Medicine (AIM) Program at Mass General Brigham.

Despite the improved efficacy of AI methods, a key question remains their reliability and explainability (the concept that an AI’s answers can be explained in a way that "makes sense" to humans). The researchers demonstrated that their methods remained stable across inter-reader variations and differences in acquisition. Patterns identified by the foundation model also demonstrated strong associations with underlying biology, mainly correlating with immune-related pathways.

"Our findings demonstrate the efficacy of foundation models in medicine when only limited data might be available for training deep learning networks, especially when applied to identifying reliable imaging biomarkers for cancer-associated use cases," said senior author Hugo Aerts, PhD, director of the AIM Program.

Pai S, Bontempi D, Hadzic I, Prudente V, Sokač M, Chaunzwa TL, Bernatz S, Hosny A, Mak RH, Birkbak NJ, Aerts HJWL.
Foundation model for cancer imaging biomarkers.
Nat Mach Intell. 2024;6(3):354-367. doi: 10.1038/s42256-024-00807-9

Most Popular Now

AI Tool Helps Predict Relapse of Pediatr…

Artificial intelligence (AI) shows tremendous promise for analyzing vast medical imaging datasets and identifying patterns that may be missed by human observers. AI-assisted interpretation of brain scans may help improve...

Detecting Lung Cancer 4 Months Earlier a…

GPs may soon be able to identify patients with an increased risk of lung cancer up to 4 months earlier than is currently the case. The GP should be able...

Infectious Disease Surveillance Platform…

The Biothreats Emergence, Analysis and Communications Network (BEACON) leverages advanced artificial intelligence (AI), large language models (LLMs) and a network of globally based experts to rapidly collect, analyze, and disseminate...

Children's Health Ireland to Transf…

Healthcare teams responsible for paediatric care in Ireland are to save significant time in accessing important diagnostic imaging and reports, with the help of a new agreement with medical imaging...

NHS, Councils, and Housing could Share N…

A new technology partnership formally announced, could help NHS, local government, and housing organisations collaborate to create an unprecedented understanding of the risks and needs of people in their care...

AI-Powered Analysis of Stent Healing

Each year, more than three million people worldwide are treated with stents to open blocked blood vessels caused by heart disease. However, monitoring the healing process after implantation remains a...

Right Patient, Right Dose, Right Time

While artificial intelligence (AI) has shown promising potential, much of its use has remained theoretical or retrospective. Turning its potential into real-world healthcare outcomes, researchers at the Yong Loo Lin...

An AI Tool Grounded in Evidence-Based Me…

A powerful clinical artificial intelligence tool developed by University at Buffalo biomedical informatics researchers has demonstrated remarkable accuracy on all three parts of the United States Medical Licensing Exam (Step...

AXREM and BHTA Name Highland as 'Fu…

Hosted by trade associations AXREM and the British Healthcare Trades Association (BHTA), 'The Future of MedTech - Innovating for Tomorrow', will allow delegates to engage with speakers from the government...