Researchers Use Foundation Models to Discover New Cancer Imaging Biomarkers

Researchers at Mass General Brigham have harnessed the technology behind foundation models, which power tools like ChatGPT, to discover new cancer imaging biomarkers that could transform how patterns are identified from radiological images. Improved identification of such patterns can greatly impact the early detection and treatment of cancer.

The research team developed their foundation model using a comprehensive dataset consisting of 11,467 images of abnormal radiologic scans. Using these images, the model was able to identify patterns that predict anatomical site, malignancy, and prognosis across three different use cases in four cohorts. Compared to existing methods in the field, their approach remained powerful when applied to specialized tasks where only limited data are available. Results are published in Nature Machine Intelligence.

"Given that image biomarker studies are tailored to answer increasingly specific research questions, we believe that our work will enable more accurate and efficient investigations," said first author Suraj Pai from the Artificial Intelligence in Medicine (AIM) Program at Mass General Brigham.

Despite the improved efficacy of AI methods, a key question remains their reliability and explainability (the concept that an AI’s answers can be explained in a way that "makes sense" to humans). The researchers demonstrated that their methods remained stable across inter-reader variations and differences in acquisition. Patterns identified by the foundation model also demonstrated strong associations with underlying biology, mainly correlating with immune-related pathways.

"Our findings demonstrate the efficacy of foundation models in medicine when only limited data might be available for training deep learning networks, especially when applied to identifying reliable imaging biomarkers for cancer-associated use cases," said senior author Hugo Aerts, PhD, director of the AIM Program.

Pai S, Bontempi D, Hadzic I, Prudente V, Sokač M, Chaunzwa TL, Bernatz S, Hosny A, Mak RH, Birkbak NJ, Aerts HJWL.
Foundation model for cancer imaging biomarkers.
Nat Mach Intell. 2024;6(3):354-367. doi: 10.1038/s42256-024-00807-9

Most Popular Now

Open Medical Works with Moray's Dig…

Open Medical is working with the Digital Health & Care Innovation Centre’s Rural Centre of Excellence on a referral management plan, as part of a research and development scheme to...

Generative AI on Track to Shape the Futu…

Using advanced artificial intelligence (AI), researchers have developed a novel method to make drug development faster and more efficient. In a new paper, Xia Ning, lead author of the study and...

AI could Help Improve Early Detection of…

A new study led by investigators at the UCLA Health Jonsson Comprehensive Cancer Center suggests that artificial intelligence (AI) could help detect interval breast cancers - those that develop between...

Reorganisation, Consolidation, and Cuts:…

NHS England has been downsized and abolished. Integrated care boards have been told to change function, consolidate, and deliver savings. Trusts are planning big cuts. The Highland Marketing advisory board...

AI-Human Task-Sharing could Cut Mammogra…

The most effective way to harness the power of artificial intelligence (AI) when screening for breast cancer may be through collaboration with human radiologists - not by wholesale replacing them...

Siemens Healthineers infection Control S…

Klinikum Region Hannover (KRH) has commissioned Siemens Healthineers to install infection control system (ICS) at the Klinikum Siloah hospital. The ICS aims to effectively tackle nosocomial infections and increase patient...

AI Tool Uses Face Photos to Estimate Bio…

Eyes may be the window to the soul, but a person's biological age could be reflected in their facial characteristics. Investigators from Mass General Brigham developed a deep learning algorithm...

Philips Future Health Index 2025 Report …

Royal Philips (NYSE: PHG, AEX: PHIA), a global leader in health technology, today unveiled its 2025 Future Health Index U.S. report, "Building trust in healthcare AI," spotlighting the state of...

AI-Powered Precision: Unlocking the Futu…

A team of researchers from the Department of Diagnostic and Therapeutic Ultrasonography at the Tianjin Medical University Cancer Institute & Hospital, have published a review in Cancer Biology & Medicine...

AI Model Improves Delirium Prediction, L…

An artificial intelligence (AI) model improved outcomes in hospitalized patients by quadrupling the rate of detection and treatment of delirium. The model identifies patients at high risk for delirium and...

Building Trust in Artificial Intelligenc…

A new review, published in the peer-reviewed journal AI in Precision Oncology, explores the multifaceted reasons behind the skepticism surrounding artificial intelligence (AI) technologies in healthcare and advocates for approaches...

SALSA: A New AI Tool for the Automated a…

Investigators of the Vall d'Hebron Institute of Oncology's (VHIO) Radiomics Group, led by Raquel Perez-Lopez, have developed SALSA (System for Automatic Liver tumor Segmentation And detection), a fully automated deep...