Pressure Sensors in the Eye

Sensors can monitor production processes, unmask tiny cracks in aircraft hulls, and determine the amount of laundry in a washing machine. In future, they will also be used in the human body and raise the alarm in the event of high pressure in the eye, bladder or brain.

If the pressure in the eye is too high, nerve fibers die, resulting in visual field loss or blindness. Since increased intraocular pressure, also known as glaucoma, is not usually painful, the condition is often diagnosed too late. Moreover, such patients often tend to develop cataracts when they get older - the lenses of their eyes become opaque. In such cases, surgeons remove the natural lens and replace it with an artificial one. To avoid further loss of nerve fibers, the intraocular pressure is then regulated as accurately as possible with the help of medication. Unfortunately, the pressure continues to vary despite medication, obligating the patient to have it constantly monitored by physicians and the medication dosage adjusted accordingly.

In future, a sensor developed by researchers at the Fraunhofer Institute for Microelectric Circuits and Systems IMS in Duisburg will obviate the need for constant visits to the physician by such patients. "We integrate the 2.5 by 2.6 millimeter sensor in the artificial lens," says Thomas van den Boom, group manager for biohybrid systems at the IMS. "This doesn't impair the patient's vision." The top and bottom of the sensor are formed by electrodes; the top electrode is flexible, in contrast to its rigid counterpart on the bottom of the sensor. When the intraocular pressure increases, the top electrode is pushed in, reducing the distance between the top and bottom of the sensor and thus increasing the capacitance. Using a tiny antenna, the implant then sends the pressure data to a reader that is fitted into the frame of a pair of spectacles. The patient can view the results on an auxiliary device and determine whether the pressure has reached a critical level. An antenna in the spectacle frame supplies the sensor with the required energy via an electromagnetic field. "The power consumption of the sensor must be kept to an absolute minimum," explains van den Boom. "All unused components are put in a kind of standby mode and only activated when needed."

The permanent eye implant is currently undergoing clinical trials and could come into general use in two to three years' time. But the sensor is not only suitable for use in the eye: When implanted in blood vessels in the thigh or the upper arm it can also help patients with chronic hypertension. "Conventional devices for measuring blood pressure at home are not suitable for determining the correct medication dosage," says van den Boom. The sensor is also expected to benefit patients suffering from increased intracranial pressure or those with incontinence problems.

For further information, please contact:
Thomas Boom
Phone: +49 (0) 203/3783-207
Fax: +49 (0) 203/3783-278
Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS
Finkenstraße 61
47057 Duisburg
www.ims.fraunhofer.de

Most Popular Now

Integrating Care Records is Good. Using …

Opinion Article by Dr Paul Deffley, Chief Medical Officer, Alcidion. A single patient record already exists in the NHS. Or at least, that’s a perception shared by many. A survey of...

Should AI Chatbots Replace Your Therapis…

The new study exposes the dangerous flaws in using artificial intelligence (AI) chatbots for mental health support. For the first time, the researchers evaluated these AI systems against clinical standards...

AI could Help Pathologists Match Cancer …

A new study by researchers at the Icahn School of Medicine at Mount Sinai, Memorial Sloan Kettering Cancer Center, and collaborators, suggests that artificial intelligence (AI) could significantly improve how...

AI Detects Early Signs of Osteoporosis f…

Investigators have developed an artificial intelligence-assisted diagnostic system that can estimate bone mineral density in both the lumbar spine and the femur of the upper leg, based on X-ray images...

AI Model Converts Hospital Records into …

UCLA researchers have developed an AI system that turns fragmented electronic health records (EHR) normally in tables into readable narratives, allowing artificial intelligence to make sense of complex patient histories...

AI Sharpens Pathologists' Interpret…

Pathologists' examinations of tissue samples from skin cancer tumours improved when they were assisted by an AI tool. The assessments became more consistent and patients' prognoses were described more accurately...

AI Tool Detects Surgical Site Infections…

A team of Mayo Clinic researchers has developed an artificial intelligence (AI) system that can detect surgical site infections (SSIs) with high accuracy from patient-submitted postoperative wound photos, potentially transforming...

Forging a Novel Therapeutic Path for Pat…

Rett syndrome is a devastating rare genetic childhood disorder primarily affecting girls. Merely 1 out of 10,000 girls are born with it and much fewer boys. It is caused by...

Mayo Clinic's AI Tool Identifies 9 …

Mayo Clinic researchers have developed a new artificial intelligence (AI) tool that helps clinicians identify brain activity patterns linked to nine types of dementia, including Alzheimer's disease, using a single...

AI Detects Fatty Liver Disease with Ches…

Fatty liver disease, caused by the accumulation of fat in the liver, is estimated to affect one in four people worldwide. If left untreated, it can lead to serious complications...

AI Matches Doctors in Mapping Lung Tumor…

In radiation therapy, precision can save lives. Oncologists must carefully map the size and location of a tumor before delivering high-dose radiation to destroy cancer cells while sparing healthy tissue...

Meet Your Digital Twin

Before an important meeting or when a big decision needs to be made, we often mentally run through various scenarios before settling on the best course of action. But when...