Pressure Sensors in the Eye

Sensors can monitor production processes, unmask tiny cracks in aircraft hulls, and determine the amount of laundry in a washing machine. In future, they will also be used in the human body and raise the alarm in the event of high pressure in the eye, bladder or brain.

If the pressure in the eye is too high, nerve fibers die, resulting in visual field loss or blindness. Since increased intraocular pressure, also known as glaucoma, is not usually painful, the condition is often diagnosed too late. Moreover, such patients often tend to develop cataracts when they get older - the lenses of their eyes become opaque. In such cases, surgeons remove the natural lens and replace it with an artificial one. To avoid further loss of nerve fibers, the intraocular pressure is then regulated as accurately as possible with the help of medication. Unfortunately, the pressure continues to vary despite medication, obligating the patient to have it constantly monitored by physicians and the medication dosage adjusted accordingly.

In future, a sensor developed by researchers at the Fraunhofer Institute for Microelectric Circuits and Systems IMS in Duisburg will obviate the need for constant visits to the physician by such patients. "We integrate the 2.5 by 2.6 millimeter sensor in the artificial lens," says Thomas van den Boom, group manager for biohybrid systems at the IMS. "This doesn't impair the patient's vision." The top and bottom of the sensor are formed by electrodes; the top electrode is flexible, in contrast to its rigid counterpart on the bottom of the sensor. When the intraocular pressure increases, the top electrode is pushed in, reducing the distance between the top and bottom of the sensor and thus increasing the capacitance. Using a tiny antenna, the implant then sends the pressure data to a reader that is fitted into the frame of a pair of spectacles. The patient can view the results on an auxiliary device and determine whether the pressure has reached a critical level. An antenna in the spectacle frame supplies the sensor with the required energy via an electromagnetic field. "The power consumption of the sensor must be kept to an absolute minimum," explains van den Boom. "All unused components are put in a kind of standby mode and only activated when needed."

The permanent eye implant is currently undergoing clinical trials and could come into general use in two to three years' time. But the sensor is not only suitable for use in the eye: When implanted in blood vessels in the thigh or the upper arm it can also help patients with chronic hypertension. "Conventional devices for measuring blood pressure at home are not suitable for determining the correct medication dosage," says van den Boom. The sensor is also expected to benefit patients suffering from increased intracranial pressure or those with incontinence problems.

For further information, please contact:
Thomas Boom
Phone: +49 (0) 203/3783-207
Fax: +49 (0) 203/3783-278
Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS
Finkenstraße 61
47057 Duisburg
www.ims.fraunhofer.de

Most Popular Now

ChatGPT can Produce Medical Record Notes…

The AI model ChatGPT can write administrative medical notes up to ten times faster than doctors without compromising quality. This is according to a new study conducted by researchers at...

Can Language Models Read the Genome? Thi…

The same class of artificial intelligence that made headlines coding software and passing the bar exam has learned to read a different kind of text - the genetic code. That code...

Bayer and Google Cloud to Accelerate Dev…

Bayer and Google Cloud announced a collaboration on the development of artificial intelligence (AI) solutions to support radiologists and ultimately better serve patients. As part of the collaboration, Bayer will...

Study Shows Human Medical Professionals …

When looking for medical information, people can use web search engines or large language models (LLMs) like ChatGPT-4 or Google Bard. However, these artificial intelligence (AI) tools have their limitations...

Shared Digital NHS Prescribing Record co…

Implementing a single shared digital prescribing record across the NHS in England could avoid nearly 1 million drug errors every year, stopping up to 16,000 fewer patients from being harmed...

North West Anglia Works with Clinisys to…

North West Anglia NHS Foundation Trust has replaced two, legacy laboratory information systems with a single instance of Clinisys WinPath. The trust, which serves a catchment of 800,000 patients in North...

Ask Chat GPT about Your Radiation Oncolo…

Cancer patients about to undergo radiation oncology treatment have lots of questions. Could ChatGPT be the best way to get answers? A new Northwestern Medicine study tested a specially designed ChatGPT...

Can AI Techniques Help Clinicians Assess…

Investigators have applied artificial intelligence (AI) techniques to gait analyses and medical records data to provide insights about individuals with leg fractures and aspects of their recovery. The study, published in...

AI Makes Retinal Imaging 100 Times Faste…

Researchers at the National Institutes of Health applied artificial intelligence (AI) to a technique that produces high-resolution images of cells in the eye. They report that with AI, imaging is...

SPARK TSL Acquires Sentean Group

SPARK TSL is acquiring Sentean Group, a Dutch company with a complementary background in hospital entertainment and communication, and bringing its Fusion Bedside platform for clinical and patient apps to...

Standing Up for Health Tech and SMEs: Sh…

AS the new chair of the health and social care council at techUK, Shane Tickell talked to Highland Marketing about his determination to support small and innovative companies, by having...

GPT-4 Matches Radiologists in Detecting …

Large language model GPT-4 matched the performance of radiologists in detecting errors in radiology reports, according to research published in Radiology, a journal of the Radiological Society of North America...