Advancing Drug Discovery with AI: Introducing the KEDD Framework

A transformative study published in Health Data Science, a Science Partner Journal, introduces a groundbreaking end-to-end deep learning framework, known as Knowledge-Empowered Drug Discovery (KEDD), aimed at revolutionizing the field of drug discovery. This innovative framework adeptly integrates structured and unstructured knowledge, enhancing the AI-driven exploration of molecular dynamics and interactions.

Traditionally, AI applications in drug discovery have been constrained by their focus on singular tasks, neglecting the rich tapestry of structured and unstructured data that could enrich their predictive accuracy. These limitations are particularly pronounced when dealing with novel compounds or proteins, where existing knowledge is scant or absent, often hampered by the prohibitive costs of manual data annotation.

Professor Zaiqing Nie, from Tsinghua University's Institute for AI Industry Research, emphasizes the enhancement potential of AI in drug discovery through KEDD. This framework synergizes data from molecular structures, knowledge graphs, and biomedical literature, offering a comprehensive approach that transcends the limitations of conventional models.

At its core, KEDD employs robust representation learning models to distill dense features from various data modalities. Following this, it integrates these features through a fusion process and leverages a predictive network to ascertain outcomes, facilitating its application across a spectrum of AI-facilitated drug discovery endeavors.

The study substantiates KEDD's effectiveness, showcasing its ability to outperform existing AI models in critical drug discovery tasks. Notably, KEDD demonstrates resilience in the face of the 'missing modality problem,' where lack of documented data on new drugs or proteins could undermine analytical processes. This resilience stems from its innovative use of sparse attention and modality masking techniques, which harness the power of existing knowledge bases to inform predictions and analyses.

Looking forward, Yizhen Luo, a key contributor to the KEDD project, outlines ambitious plans to enhance the framework's capabilities, including the exploration of multimodal pre-training strategies. The overarching objective is to cultivate a versatile, knowledge-driven AI ecosystem that accelerates biomedical research, delivering timely insights and recommendations to advance therapeutic discovery and development.

Luo Y, Liu XY, Yang K, Huang K, Hong M, Zhang J, Wu Y, Nie Z.
Toward Unified AI Drug Discovery with Multimodal Knowledge.
Health Data Sci. 2024 Feb 23;4:0113. doi: 10.34133/hds.0113

Most Popular Now

European Artificial Intelligence Act Com…

The European Artificial Intelligence Act (AI Act), the world's first comprehensive regulation on artificial intelligence, enters into force. The AI Act is designed to ensure that AI developed and used...

Patient Safety must be Central to the De…

An EPR system brings together different patient information in one place, making it easier to access for healthcare professionals. This information can include patients' own notes, test results, observations by...

Generative AI can Not yet Reliably Read …

It may someday be possible to use Large Language Models (LLM) to automatically read clinical notes in medical records and reliably and efficiently extract relevant information to support patient care...

ChatGPT Shows Promise in Answering Patie…

The groundbreaking ChatGPT chatbot shows potential as a time-saving tool for responding to patient questions sent to the urologist's office, suggests a study in the September issue of Urology Practice®...

Survey: Most Americans Comfortable with …

Artificial intelligence (AI) is all around us - from smart home devices to entertainment and social media algorithms. But is AI okay in healthcare? A new national survey commissioned by...

AI can Help Rule out Abnormal Pathology …

A commercial artificial intelligence (AI) tool used off-label was effective at excluding pathology and had equal or lower rates of critical misses on chest X-ray than radiologists, according to a...

What Does the EU's Recent AI Act Me…

The European Union's law on artificial intelligence came into force on 1 August. The new AI Act essentially regulates what artificial intelligence can and cannot do in the EU. A...

AI Spots Cancer and Viral Infections at …

Researchers at the Centre for Genomic Regulation (CRG), the University of the Basque Country (UPV/EHU), Donostia International Physics Center (DIPC) and the Fundación Biofisica Bizkaia (FBB, located in Biofisika Institute)...

Video Gaming Improves Mental Well-Being

A pioneering study titled "Causal effect of video gaming on mental well-being in Japan 2020-2022," published in Nature Human Behaviour, has conducted the most comprehensive investigation to date on the...

New Diabetes Research Links Blood Glucos…

As part of its ongoing exploration of vocal biomarkers and the role they can play in enhancing health outcomes, Klick Labs published a new study in Scientific Reports - confirming...

Machine learning helps identify rheumato…

A machine-learning tool created by Weill Cornell Medicine and Hospital for Special Surgery (HSS) investigators can help distinguish subtypes of rheumatoid arthritis (RA), which may help scientists find ways to...

New AI Software could Make Diagnosing De…

Although Alzheimer's is the most common cause of dementia - a catchall term for cognitive deficits that impact daily living, like the loss of memory or language - it's not...