Advancing Drug Discovery with AI: Introducing the KEDD Framework

A transformative study published in Health Data Science, a Science Partner Journal, introduces a groundbreaking end-to-end deep learning framework, known as Knowledge-Empowered Drug Discovery (KEDD), aimed at revolutionizing the field of drug discovery. This innovative framework adeptly integrates structured and unstructured knowledge, enhancing the AI-driven exploration of molecular dynamics and interactions.

Traditionally, AI applications in drug discovery have been constrained by their focus on singular tasks, neglecting the rich tapestry of structured and unstructured data that could enrich their predictive accuracy. These limitations are particularly pronounced when dealing with novel compounds or proteins, where existing knowledge is scant or absent, often hampered by the prohibitive costs of manual data annotation.

Professor Zaiqing Nie, from Tsinghua University's Institute for AI Industry Research, emphasizes the enhancement potential of AI in drug discovery through KEDD. This framework synergizes data from molecular structures, knowledge graphs, and biomedical literature, offering a comprehensive approach that transcends the limitations of conventional models.

At its core, KEDD employs robust representation learning models to distill dense features from various data modalities. Following this, it integrates these features through a fusion process and leverages a predictive network to ascertain outcomes, facilitating its application across a spectrum of AI-facilitated drug discovery endeavors.

The study substantiates KEDD's effectiveness, showcasing its ability to outperform existing AI models in critical drug discovery tasks. Notably, KEDD demonstrates resilience in the face of the 'missing modality problem,' where lack of documented data on new drugs or proteins could undermine analytical processes. This resilience stems from its innovative use of sparse attention and modality masking techniques, which harness the power of existing knowledge bases to inform predictions and analyses.

Looking forward, Yizhen Luo, a key contributor to the KEDD project, outlines ambitious plans to enhance the framework's capabilities, including the exploration of multimodal pre-training strategies. The overarching objective is to cultivate a versatile, knowledge-driven AI ecosystem that accelerates biomedical research, delivering timely insights and recommendations to advance therapeutic discovery and development.

Luo Y, Liu XY, Yang K, Huang K, Hong M, Zhang J, Wu Y, Nie Z.
Toward Unified AI Drug Discovery with Multimodal Knowledge.
Health Data Sci. 2024 Feb 23;4:0113. doi: 10.34133/hds.0113

Most Popular Now

Mobile Phone Data Helps Track Pathogen S…

A new way to map the spread and evolution of pathogens, and their responses to vaccines and antibiotics, will provide key insights to help predict and prevent future outbreaks. The...

AI Model to Improve Patient Response to …

A new artificial intelligence (AI) tool that can help to select the most suitable treatment for cancer patients has been developed by researchers at The Australian National University (ANU). DeepPT, developed...

Can AI Tell you if You Have Osteoporosis…

Osteoporosis is so difficult to detect in early stage it’s called the "silent disease." What if artificial intelligence could help predict a patient’s chances of having the bone-loss disease before...

Study Reveals Why AI Models that Analyze…

Artificial intelligence (AI) models often play a role in medical diagnoses, especially when it comes to analyzing images such as X-rays. However, studies have found that these models don’t always...

Think You're Funny? ChatGPT might b…

A study comparing jokes by people versus those told by ChatGPT shows that humans need to work on their material. The research team behind the study published on Wednesday, July 3...

Innovative, Highly Accurate AI Model can…

If there is one medical exam that everyone in the world has taken, it's a chest x-ray. Clinicians can use radiographs to tell if someone has tuberculosis, lung cancer, or...

New AI Approach Optimizes Antibody Drugs

Proteins have evolved to excel at everything from contracting muscles to digesting food to recognizing viruses. To engineer better proteins, including antibodies, scientists often iteratively mutate the amino acids -...

AI Speeds Up Heart Scans, Saving Doctors…

Researchers have developed a groundbreaking method for analysing heart MRI scans with the help of artificial intelligence (AI), which could save valuable NHS time and resources, as well as improve...

Researchers Customize AI Tools for Digit…

Scientists from Weill Cornell Medicine and the Dana-Farber Cancer Institute in Boston have developed and tested new artificial intelligence (AI) tools tailored to digital pathology - a rapidly growing field...

Young People Believe that AI is a Valuab…

Children and young people are generally positive about artificial intelligence (AI) and think it should be used in modern healthcare, finds the first-of-its-kind survey led by UCL and Great Ormond...