Researchers Develop Deep Learning Model to Predict Breast Cancer

Researchers have developed a new, interpretable artificial intelligence (AI) model to predict 5-year breast cancer risk from mammograms, according to a new study published today in Radiology, a journal of the Radiological Society of North America (RSNA).

One in 8 women, or approximately 13% of the female population in the U.S., will develop invasive breast cancer in their lifetime and 1 in 39 women (3%) will die from the disease, according to the American Cancer Society. Breast cancer screening with mammography, for many women, is the best way to find breast cancer early when treatment is most effective. Having regularly scheduled mammograms can significantly lower the risk of dying from breast cancer. However, it remains unclear how to precisely predict which women will develop breast cancer through screening alone.

Mirai, a state-of-the-art, deep learning-based algorithm, has demonstrated proficiency as a tool to help predict breast cancer but, because little is known about its reasoning process, the algorithm has the potential for overreliance by radiologists and incorrect diagnoses.

"Mirai is a black box - a very large and complex neural network, similar in construction to ChatGPT - and no one knew how it made its decisions,” said the study’s lead author, Jon Donnelly, B.S., a Ph.D. student in the Department of Computer Science at Duke University in Durham, North Carolina. “We developed an interpretable AI method that allows us to predict breast cancer from mammograms 1 to 5 years in advance. AsymMirai is much simpler and much easier to understand than Mirai."

For the study, Donnelly and colleagues in the Department of Computer Science and Department of Radiology compared their newly developed mammography-based deep learning model called AsymMirai to Mirai’s 1- to 5-year breast cancer risk predictions. AsymMirai was built on the “front end” deep learning portion of Mirai, while replacing the rest of that complicated method with an interpretable module: local bilateral dissimilarity, which looks at tissue differences between the left and right breasts.

"Previously, differences between the left and right breast tissue were used only to help detect cancer, not to predict it in advance,” Donnelly said. “We discovered that Mirai uses comparisons between the left and right sides, which is how we were able to design a substantially simpler network that also performs comparisons between the sides."

For the study, the researchers compared 210,067 mammograms from 81,824 patients in the EMory BrEast imaging Dataset (EMBED) from January 2013 to December 2020 using both Mirai and AsymMirai models. The researchers found that their simplified deep learning model performed almost as well as the state-of-the-art Mirai for 1- to 5-year breast cancer risk prediction.

The results also supported the clinical importance of breast asymmetry and, as a result, highlights the potential of bilateral dissimilarity as a future imaging marker for breast cancer risk.

Since the reasoning behind AsymMirai’s predictions is easy to understand, it could be a valuable adjunct to human radiologists in breast cancer diagnoses and risk prediction, Donnelly said.

"We can, with surprisingly high accuracy, predict whether a woman will develop cancer in the next 1 to 5 years based solely on localized differences between her left and right breast tissue," he said. "This could have public impact because it could, in the not-too-distant future, affect how often women receive mammograms."

Donnelly J, Moffett L, Barnett AJ, Trivedi H, Schwartz F, Lo J, Rudin C.
AsymMirai: Interpretable Mammography-based Deep Learning Model for 1-5-year Breast Cancer Risk Prediction.
Radiology. 2024 Mar;310(3):e232780. doi: 10.1148/radiol.232780

Most Popular Now

Mobile Phone Data Helps Track Pathogen S…

A new way to map the spread and evolution of pathogens, and their responses to vaccines and antibiotics, will provide key insights to help predict and prevent future outbreaks. The...

AI Model to Improve Patient Response to …

A new artificial intelligence (AI) tool that can help to select the most suitable treatment for cancer patients has been developed by researchers at The Australian National University (ANU). DeepPT, developed...

Can AI Tell you if You Have Osteoporosis…

Osteoporosis is so difficult to detect in early stage it’s called the "silent disease." What if artificial intelligence could help predict a patient’s chances of having the bone-loss disease before...

Study Reveals Why AI Models that Analyze…

Artificial intelligence (AI) models often play a role in medical diagnoses, especially when it comes to analyzing images such as X-rays. However, studies have found that these models don’t always...

Think You're Funny? ChatGPT might b…

A study comparing jokes by people versus those told by ChatGPT shows that humans need to work on their material. The research team behind the study published on Wednesday, July 3...

Innovative, Highly Accurate AI Model can…

If there is one medical exam that everyone in the world has taken, it's a chest x-ray. Clinicians can use radiographs to tell if someone has tuberculosis, lung cancer, or...

New AI Approach Optimizes Antibody Drugs

Proteins have evolved to excel at everything from contracting muscles to digesting food to recognizing viruses. To engineer better proteins, including antibodies, scientists often iteratively mutate the amino acids -...

AI Speeds Up Heart Scans, Saving Doctors…

Researchers have developed a groundbreaking method for analysing heart MRI scans with the help of artificial intelligence (AI), which could save valuable NHS time and resources, as well as improve...

Researchers Customize AI Tools for Digit…

Scientists from Weill Cornell Medicine and the Dana-Farber Cancer Institute in Boston have developed and tested new artificial intelligence (AI) tools tailored to digital pathology - a rapidly growing field...

Young People Believe that AI is a Valuab…

Children and young people are generally positive about artificial intelligence (AI) and think it should be used in modern healthcare, finds the first-of-its-kind survey led by UCL and Great Ormond...