Balancing Training Data and Human Knowledge Makes AI Act More Like a Scientist

When you teach a child how to solve puzzles, you can either let them figure it out through trial and error, or you can guide them with some basic rules and tips. Similarly, incorporating rules and tips into AI training - such as the laws of physics - could make them more efficient and more reflective of the real world. However, helping the AI assess the value of different rules can be a tricky task.

Researchers report in the journal Nexus that they have developed a framework for assessing the relative value of rules and data in "informed machine learning models" that incorporate both. They showed that by doing so, they could help the AI incorporate basic laws of the real world and better navigate scientific problems like solving complex mathematical problems and optimizing experimental conditions in chemistry experiments.

"Embedding human knowledge into AI models has the potential to improve their efficiency and ability to make inferences, but the question is how to balance the influence of data and knowledge," says first author Hao Xu of Peking University. "Our framework can be employed to evaluate different knowledge and rules to enhance the predictive capability of deep learning models."

Generative AI models like ChatGPT and Sora are purely data-driven - the models are given training data, and they teach themselves via trial and error. However, with only data to work from, these systems have no way to learn physical laws, such as gravity or fluid dynamics, and they also struggle to perform in situations that differ from their training data. An alternative approach is informed machine learning, in which researchers provide the model with some underlying rules to help guide its training process, but little is known about the relative importance of rules vs data in driving model accuracy.

"We are trying to teach AI models the laws of physics so that they can be more reflective of the real world, which would make them more useful in science and engineering," says senior author Yuntian Chen of the Eastern Institute of Technology, Ningbo.

To improve the performance of informed machine learning, the team developed a framework to calculate the contribution of an individual rule to a given model's predictive accuracy. The researchers also examined interactions between different rules because most informed machine learning models incorporate multiple rules, and having too many rules can cause models to collapse.

This allowed them to optimize models by tweaking the relative influence of different rules and to filter out redundant or interfering rules entirely. They also identified some rules that worked synergistically and other rules that were completely dependent on the presence of other rules.

"We found that the rules have different kinds of relationships, and we use these relationships to make model training faster and get higher accuracy," says Chen.

The researchers say that their framework has broad practical applications in engineering, physics, and chemistry. In the paper, they demonstrated the method’s potential by using it to optimize machine learning models to solve multivariate equations and to predict the results of thin layer chromatography experiments and thereby optimize future experimental chemistry conditions.

Next, the researchers plan to develop their framework into a plugin tool that can be used by AI developers. Ultimately, they also want to train their models so that the models can extract knowledge and rules directly from data, rather than having rules selected by human researchers.

"We want to make it a closed loop by making the model into a real AI scientist," says Chen. "We are working to develop a model that can directly extract knowledge from the data and then use this knowledge to create rules and improve itself."

Hao Xu, Yuntian Chen, Dongxiao Zhang.
Worth of prior knowledge for enhancing deep learning.
Nexus, 2024. doi: 10.1016/j.ynexs.2024.100003

Most Popular Now

AI Catches One-Third of Interval Breast …

An AI algorithm for breast cancer screening has potential to enhance the performance of digital breast tomosynthesis (DBT), reducing interval cancers by up to one-third, according to a study published...

Great plan: Now We need to Get Real abou…

The government's big plan for the 10 Year Health Plan for the NHS laid out a big role for delivery. However, the Highland Marketing advisory board felt the missing implementation...

Researchers Create 'Virtual Scienti…

There may be a new artificial intelligence-driven tool to turbocharge scientific discovery: virtual labs. Modeled after a well-established Stanford School of Medicine research group, the virtual lab is complete with an...

From WebMD to AI Chatbots: How Innovatio…

A new research article published in the Journal of Participatory Medicine unveils how successive waves of digital technology innovation have empowered patients, fostering a more collaborative and responsive health care...

New AI Tool Accelerates mRNA-Based Treat…

A new artificial intelligence (AI) model can improve the process of drug and vaccine discovery by predicting how efficiently specific mRNA sequences will produce proteins, both generally and in various...

Can Amazon Alexa or Google Home Help Det…

Computer scientists at the University of Rochester have developed an AI-powered, speech-based screening tool that can help people assess whether they are showing signs of Parkinson’s disease, the fastest growing...

AI also Assesses Dutch Mammograms Better…

AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by...

RSNA AI Challenge Models can Independent…

Algorithms submitted for an AI Challenge hosted by the Radiological Society of North America (RSNA) have shown excellent performance for detecting breast cancers on mammography images, increasing screening sensitivity while...

AI could Help Emergency Rooms Predict Ad…

Artificial intelligence (AI) can help emergency department (ED) teams better anticipate which patients will need hospital admission, hours earlier than is currently possible, according to a multi-hospital study by the...

Head-to-Head Against AI, Pharmacy Studen…

Students pursuing a Doctor of Pharmacy degree routinely take - and pass - rigorous exams to prove competency in several areas. Can ChatGPT accurately answer the same questions? A new...

NHS Active 10 Walking Tracker Users are …

Users of the NHS Active 10 app, designed to encourage people to become more active, immediately increased their amount of brisk and non-brisk walking upon using the app, according to...

The Human Touch of Doctors will Still be…

AI-based medicine will revolutionise care including for Alzheimer’s and diabetes, predicts a technology expert, but it must be accessible to all patients. Healing with Artificial Intelligence, written by technology expert Daniele...